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Ejecta in SNe and NSMs may have

enhanced neutrino opacity just prior

to the r-process. Does this change
initial conditions and thus yields?
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 What's inside a neutron star?
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* Not just a “giant nucleus in space!”



« Neutron star core is uniform nuclear matter (n, = 2.4 x 104 g
cm3)
* The crust is conventional, isolated nuclel

* What sort of nuclear phase transition must occur between these
two phases of matter?




- First theoretical models of the shapes of nuclei near n,

1983: Ravenhall, Pethick, & Wilson

 Frustration: Competition between

1984: Hashimoto, H. Seki, and M. Yamada w

proton-proton Coulomb repulsion
and strong nuclear attraction

* Nucleons adopt non-spherical
geometries near the saturation
density to minimize surface energy

Shape of Nuclei in the Crust of Neutron Star
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Fig. 1. Candidates for nuclear shapes. Protons are confined in the
nuclei. Then the shapes are, (a) sphere, (b) cylinder, (¢) board or plank, (d) cylindrical hole and -

(e) spherical hole. Note that many cells of the same shape and orientation are piled up to form

the whole space, and thereby the nuclei are joined to each other except for the spherical nuclei (a).

(e)

hatched regions, which we call



Shape of Nuclei in the Crust of Neutron Star
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Fig. 1. Candidates for nuclear shapes. Protons are confined in the hatched regions, which we call

nuclei. Then the shapes are, (a) sphere, (b) cylinder, (¢) board or plank, (d) cylindrical hole and .
(e) spherical hole. Note that many cells of the same shape and orientation are piled up to form
the whole space, and thereby the nuclei are joined to each other except for the spherical nuclei (a).



 Classical Molecular Dynamics with IUMD on Big Red Il
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* Where does pasta form?
1) Inner crust of neutron stars

LU SIS (Coulomb crystal of n-rich nuclei
+ relativistic degenerate €7)
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* Where does pasta form?

1) Inner crust of neutron stars

... but that’s not interesting
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1) Inner crust of neutron stars « Under what conditions does
... but that’s not interesting pasta form?



* Where does pasta form?

1) Inner crust of neutron stars
... but that’s not interesting

 Under what conditions does
pasta form?

1) Temperature: T = 10 MeV
2) Density: 0.1 ny=n=1.0n,
3) Proton Fraction: 0.1 = Ye

(Sonoda et al., 2008)
(Schuetrumpf et al. 2013)
(Caplan et al., in prep)



* Where does pasta form?

1) Inner crust of neutron stars * Under what conditions does
... but that’s not interesting pasta form?

2) Supernova? 1) Temperature: T = 10 MeV

3) Neutrons star mergers? 2) Density: 0.1 ny=n=1.0n,

3) Proton Fraction: 0.1 = Ye



* Where does pasta form?

1) Inner crust of neutron stars » Under what conditions does
... but that’s not interesting pasta form?
2) Supernova? 1) Temperature: T = 10 MeV
3) Neutrons star mergers? 2) Density: 0.1 ny=n=1.0n,
A 3) Proton Fraction: 0.1 = Ye

\

Where in these do we find these conditions?



Supernova

« Pasta has been studied for its role in supernova

* When the core collapses
to form a proto-neutron
star, it deleptonizes.

* The flux of 10°® neutrinos
from the core interacts
with the infalling gas,
blowing off the outer
layers




« Pasta has been studied for its role in supernova

» Pasta ‘pieces’ have a separation comparable to neutrino
wavelengths, so neutrinos can scatter coherently from pasta

* This makes pasta opaque,
trapping neutrinos



* We calculate the opacity
of pasta, or mean free path,
from molecular dynamics
simulations

Si(q) = (pi (g, t)pi(q,t))e — (pi (q,1))i{pi(q, 1))
pi(q,t) = N2 ZNi etar;i(t)

v Jj=1""

)‘t_l = ngn<S(EV)>

(Horowitz et al., 2004)
(Caplan et al., 2017)

(Horowitz et al.,
2016)



* What happens when you include
pasta opacity in supernova
simulations?

» 1D Simulation of supernova
with pasta (solid) and
without pasta (dashed)

» Pasta gives supernova a
hotter, extended atmosphere.

* \What does this do to neutrino
luminosities?
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(Horowitz et al., 2016)



* What does this do to neutrino
luminosities?

* Well, we observed ~20 neutrinos
from SN1987A. With SuperK, we
expect several thousand detections.

 Pasta has a distinct effect on
supernova neutrino signals:

* More energetic neutrinos at
later times

* More neutrinos at late times
after core collapse

—_
™
|
b0
T
¥
o
L9}
o
L
—
=
-]

T
- Inﬂl‘ Illnl‘l‘ T IIrT

ey (MeV)

Counts [#/bin]

tpost-bounce (s)

(Horowitz et al., 2016)



* What is the neutrino opacity of pasta?

* What effect does this neutrino opacity have on supernova?

« Certainly, the enhanced neutrino opacity should affect the proton fraction
of the pasta. This is material that is hot, dense, and neutron rich, and
may undergo the r-process. How does pasta change the r-process?



« What about neutron star mergers?
* |t's like a supernova run in reverse...
* Ejecta may pass through pasta phases




* One recent result (Lippuner, 2017), the lifetime of the
hypermassive NS in a merger strongly effects r-process yields
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« Observed solar r-process
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Forging
Connections

* Theory can provide the
modified neutrino opacities
for pasta matter.

« Can simulation/nuclear
reaction network codes be
modified to study the effect
that pasta plays on the
ejecta?




