NON-LTE ABUNDANCE ANALYSIS OF THE MOST IRON-POOR STARS IN THE GALAXY

RANA EZZEDDINE

(JINA-CEE POSTDOCTORAL FELLOW)
IN COLLABORATION WITH: ANNA FREBEL, BERTRAND PLEZ, TATYANA SITNOVA, LYUDMILLA MASHONKINA.

QUESTIONS?

- What are the most Iron-poor stars in the Galaxy?
- Why are they important \& What can we learn from them?
- They are the rare stellar relics of the early universe.
- They have records of the "First" Population III stars recorded in their atmospheres

Cosmic Timeline (Not to Scale)

- They are the rare stellar relics of the early universe.
- They have records of the "First" Population III stars recorded in their atmospheres

Cosmic Timeline (Not to Scale)

- They are the rare stellar relics of the early universe.
- They have records of the "First" Population III stars recorded in their atmospheres

- They are the rare stellar relics of the early universe.
- They have records of the "First" Population III stars recorded in their atmospheres

Cosmic Timeline (Not to Scale)

Big Bang

First Galaxies

- They are the rare stellar relics of the early universe.
- They have records of the "First" Population III stars recorded in their atmospheres

Cosmic Timeline (Not to Scale)
more metal cosmic recycling

Big Bang

First Galaxies

- They are the rare stellar relics of the early universe.
b They have records of the "First" Population III stars recorded in their atmospheres

Cosmic Timeline (Not to Scale)

© Ultra Metal-Poor stars: $-5.00<[\mathrm{Fe} / \mathrm{H}]<-4.00$, number=~20

- Hyper Metal-Poor stars: [Fe/H] <-5.00, number=~5 (SMSS J0313-6708 (Keller star) [Fe/H] <-6.50)

Beers \& Christlieb (2005)

- Comparing UMP \& HMP stellar abundance patterns to Pop III Supernova nucleosynthesis yields to determine Pop III progenitor properties: Mass, SN explosion energy, Mixing fractions,..
- Depends on derived elemental abundances : need precise abundances

ABUNDANCES ARE NOT DIRECTLY MEASURED, BUT DERIVED!

ABUNDANCE DETERMINATION

ABUNDANCES ARE NOT DIRECTLY MEASURED, BUT DERIVED!

ABUNDANCE DETERMINATION

ABUNDANCE MODELLING ASSUMPTIONS

Abundances are not measured BUT determined
-1D vs. 3D

- Plane-parallel vs. spherical geometry
- Homogeneity
- Stationarity
- Hydrostatic equilibrium
- Flux constancy (radiative equilibrium)

ABUNDANCE MODELLING ASSUMPTIONS

Remo Collet

ABUNDANCE MODELLING ASSUMPTIONS

Remo Collet

Mathias Steffen (priv comm.)

Abundances are not measured BUT determined

-1D vs. 3D

- Plane-parallel vs. spherical geometry
- Homogeneity
- Stationarity
- Hydrostatic equilibrium
- Flux constancy (radiative equilibrium)
- Local thermodynamic equilibrium (LTE)
- Matter assumed in equilibrium with the radiation field over a finite volume of gas.
- Properties of gas defined by one T at each depth (Saha-Boltzmann statistics)
- Source function $S(v)=B(v)$ (Planck function, $f(T)$)
- Valid in cool Main Sequence stellar atmospheres where collisions dominate as to induce TE
- May or may not hold for a given spectral line

- Matter assumed in equilibrium with the radiation field over a finite volume of gas.
- Properties of gas defined by one T at each depth (Saha-Boltzmann statistics)
- Source function $S(v)=B(v)($ Planck function, $f(T)$)
- Valid in cool Main Sequence stellar atmospheres where collisions dominate as to induce TE
- May or may not hold for a given spectral line

HOWEVER, (LUCKILY FOR US!!), IN REALITY, STARS ARE DYNAMICAL, NON-LOCAL SYSTEMS!

NON-LOCAL THERMODYNAMIC EQUILIBRIUM EFFECTS

Photons carry non-local information:
Everything depends on everything, everywhere else!

Radiative Interaction

4
Collisional Interaction

NON-LOCAL THERMODYNAMIC EQUILIBRIUM EFFECTS

Photons carry non-local information:
Everything depends on everything, everywhere else!

Radiative Interaction
4 Collisional Interaction

Statistical Equilibrium Equation has to be solved simultaneously with the radiative transfer equation:

$$
n_{\mathrm{i}} \Sigma_{\mathrm{j} \neq \mathrm{i}}\left(\boldsymbol{R}_{\mathrm{ij}}+\mathbf{C}_{\mathrm{ij}}\right)=\Sigma_{\mathrm{j} \neq \mathrm{i}} n_{\mathrm{j}}\left(\mathbf{R}_{\mathrm{ij}}+\mathbf{C}_{\mathrm{j} j}\right)
$$

NON-LOCAL THERMODYNAMIC EQUILIBRIUM EFFECTS

Photons carry non-local information: Everything depends on everything, everywhere else!
departure coefficient (b)= level population density (NLTE)/level population density (LTE)

Ezzeddine et al 2017a

Statistical Equilibrium Equation has to be solved simultaneously with the radiative transfer equation:

$$
n_{\mathrm{i}} \Sigma_{\mathrm{j} \neq \mathrm{i}}\left(\boldsymbol{R}_{\mathrm{ij}}+\mathbf{C}_{\mathrm{ij}}\right)=\sum_{\mathrm{j} \neq \mathrm{i}} n_{\mathrm{j}}\left(\boldsymbol{R}_{\mathrm{j} \mathrm{i}}+\boldsymbol{C}_{\mathrm{j} \mathrm{j}}\right)
$$

Bulk of atomic data required in NLTE calculations

Status Quo?

Large uncertainties still associated with collisional rates due to lack of experimental cross-section data, esp. collisions with Hydrogen in cool stars which plays an important role esp. in metal-poor stars.

$$
\frac{n_{\mathrm{H}}}{n_{e-}} \sim 10^{4}
$$

Radiative Interaction
Collisional Interaction

ROLE OF HYDROGEN COLLISIONS

Classical approximation overestimates collisions by ~ 8 orders of magnitude

ROLE OF HYDROGEN COLLISIONS

Quantum Fitting Method

Ezzeddine et al. (2017a)

Departure from LTE can be severe in UMP stars!

NLTE EFFECTS

Departure from LTE can be severe in UMP stars!

NLTE EFFECTS

Similarly for Mg
Ezzeddine et al. 2017c (in prep.)

... and Ca (with larger scatter)

Better agreement between Ca I and Ca II in NLTE vs. LTE

CHEMICAL EVOLUTION

QUESTIONS?

- What are the most Iron-poor stars in the Galaxy?
- They are relics of Pop III stars, with imprints of their chemical compositions in their atmospheres
- Why are they important \& What can we learn from them?
- They can be used to directly understand and constrain the IMF and properties of Pop III stars and first SN.
- They give us the opportunity to investigate the chemical evolution and enrichment in the early universe.
- Accurate modeling of atmospheres in UMP stars (NLTE) is very important

