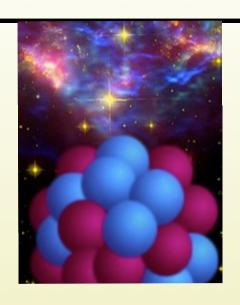


Ji et al. 2016, Nature

A rare and prolific r-process event

Hydroge 1.008	votose ODSEI VEU III CHE UICI a-Tailic UWalli galaxy Necicululii II														Helium 4.003		
3 Li Lithium 6.941	Be Beryllium 9.012											5 B Boron 10.811	6 Carbon 12.011	7 N Nitrogen 14.007	8 Oxygen 15.999	Fluorine	Ne Neon 20.180
Na Sodium 22.990	Mg Magnesium 24.305	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	— VIII —	10	11 IB 1B	12 IIB 2B	Al Aluminum 26.982	Si Silicon 28.086	Phosphorus 30.974	16 S Sulfur 32.066	Chlorine 35.453	Argon 39.948
19 K Potassium 39.098	Ca Calcium 40.078	Sc Scandium 44.956	Ti Titanium 47.867	Vanadium 50.942	Cr Chromium 51.996	Mn Manganese 54.938	Fe Iron 55.845	27 Co Cobalt 58.933	Ni Nickel 58.693	29 Cu Copper 63.546	Zn Zinc 65.38	Ga Gallium 69.723	Ge Germanium 72.631	As Arsenic 74.922	Se Selenium 78.971	Br Bromine 79.904	Kr Krypton 84.798
Rb Rubidium 84.468	Sr Strontium 87.62	Y Yttrium 88.906	Zr Zirconium 91.224	Nb Niobium 92.906	Mo Molybdenum 95.95	Tc Technetium 98.907	Ru Ruthenium 101.07	Rhodium 102.906	Palladium	47 Ag Silver 107.868	48 Cd Cadmium 112.414	49 In Indium 114.818	50 Sn Tin 118.711	51 Sb Antimony 121.760	Te Tellurium 127.6	53 Iodine 126.904	54 Xe xenon 131.294
55 Cs cesium 132.905	56 Ba Barium 137.328	57-71 La Lanthanum 138.905	Hf Hafnium 178.49	Ta Ta Tantalum 180.948	74 W Tungsten 183.84	Rhenium 186.207	76 Os Osmium 190.23	77 r Iridium 192.217	78 Pt Platinum 195.085	79 Au Gold 196.967	80 Hg Mercury 200.592	TI Thallium 204.383	82 Pb Lead 207.2	Bi Bismuth 208.980	Po Polonium [208.982]	At Astatine 209.987	86 Rn Radon 222.018
Fr Fr Francium 223.020	Ra Radium 226.025	89-103 AC Actinium 227.028	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	Seaborgium [266]	107 Bh Bohrium [264]	Hs Hassium [269]	Mt Meitnerium [268]	Ds Darmstadtium	Rg Roentgenium [272]	Cn Copernicium	Unutrium unknown	Flerovium [289]	Uup Ununpentium unknown	Livermorium [298]	Ununseptium unknown	Ununoctium unknown


elements made in the rapid (r-) neutron-capture process

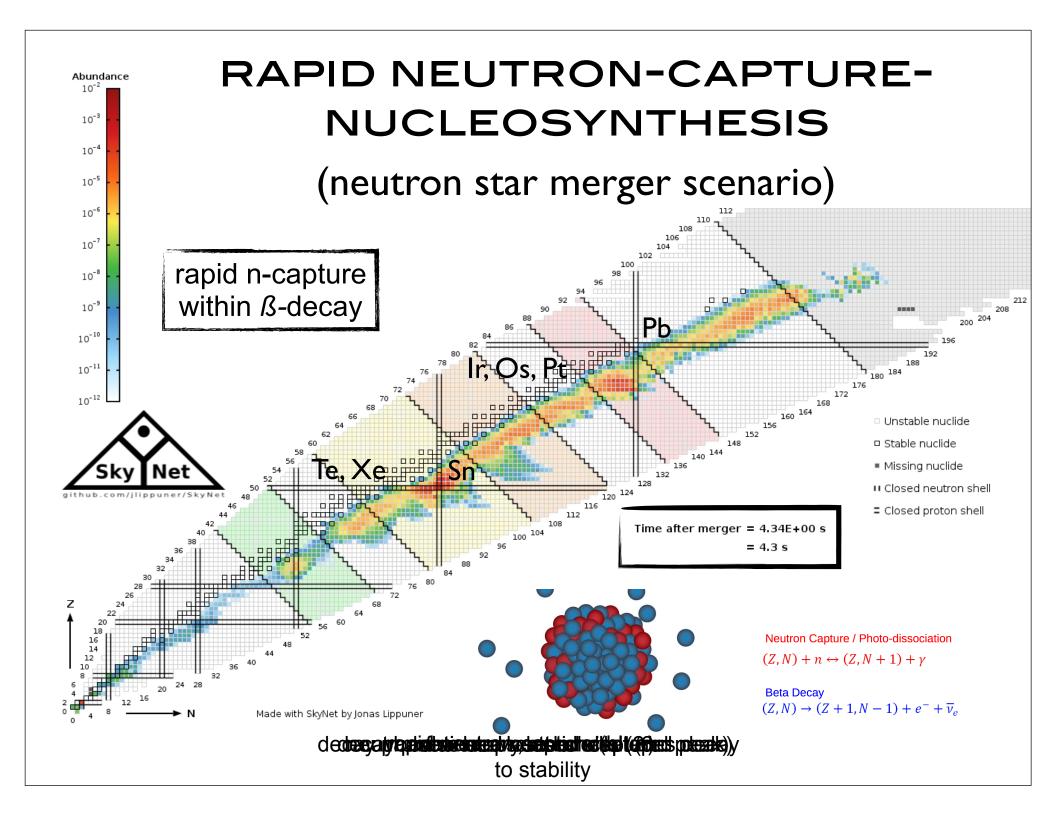
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Lanthanum 138.905	Cerium 140.116	Praseodymium 140.908	Neodymium 144.243	Promethium 144.913	Samarium 150.36	Europium 151.964	Gadolinium 157.25	Terbium 158.925	Dysprosium 162.500	Holmium 164.930	Erbium 167.259	Thulium 168.934	Ytterbium 173.055	Lutetium 174.967
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium 227.028	Thorium 232.038	Protactinium 231.036	Uranium 238.029	Neptunium 237.048	Plutonium 244.064	Americium 243.061	Curium 247.070	Berkelium 247.070	Californium 251.080	Einsteinium [254]	Fermium 257.095	Mendelevium 258.1	Nobelium 259.101	Lawrencium [262]

Anna Frebel

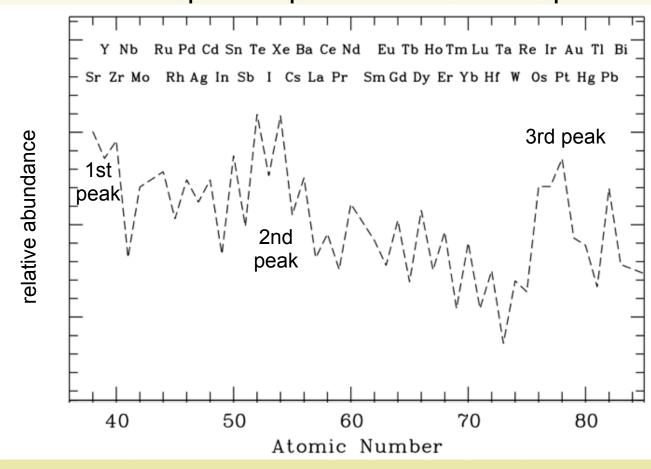
THE STORY OF RETICULUM II

Nuclear Astrophysics

Cosmic origin of the chemical elements

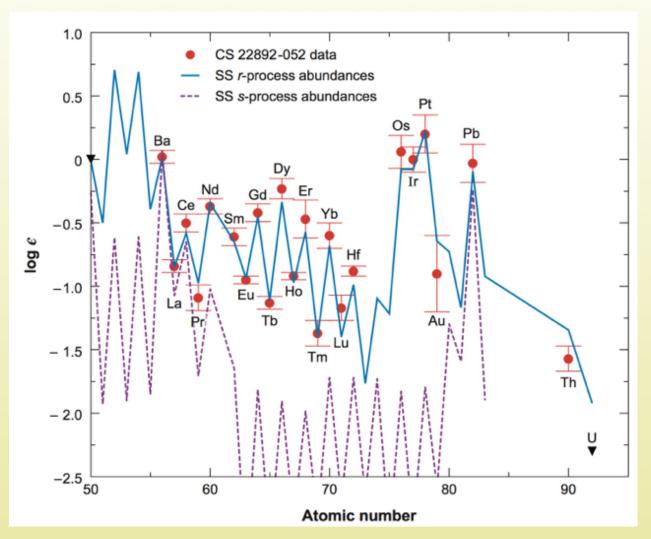

Stellar Archaeology

Clues to the astrophysical site of r-process nucleosynthesis


Dwarf Galaxy Archaeology

Ancient, clean chemical enrichment signatures

R-PROCESS PATTERN


neutron-capture r-process elemental pattern

UNIVERSAL R-PROCESS PATTERN OBSERVED IN METAL-POOR STARS

r-process abundance patterns are the same in the Sun and old metalpoor stars

r-process stars are all extremely metal-poor: [Fe/H]~-3.0 (= 1/1000th of solar Fe value)

Sneden et al. 2008

Definition: $[Fe/H] = log_{10}(N_{Fe}/N_H)_{star} - log_{10}(N_{Fe}/N_H)_{Sun}$

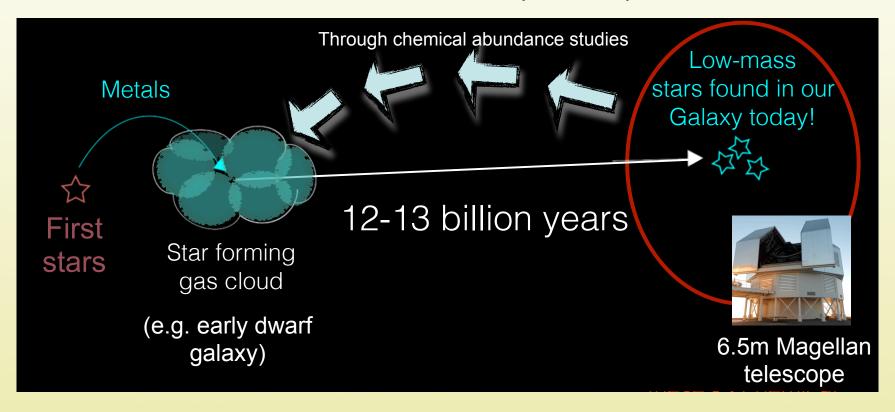
RARE R-PROCESS STARS IN THE MILKY WAY

How common are r-process metal-poor stars in the Milky Way?

3 to 5% of metal-poor stars w/ [Fe/H]<-2.5 (Barklem et al. 05)

Only ~30 stars known so far w/ [Eu/Fe] > 1.0; i.e. clear r-process pattern above Ba

More stars known with lower levels of 0.3 < [Eu/Fe] < 1.0; unclear what lowest level is

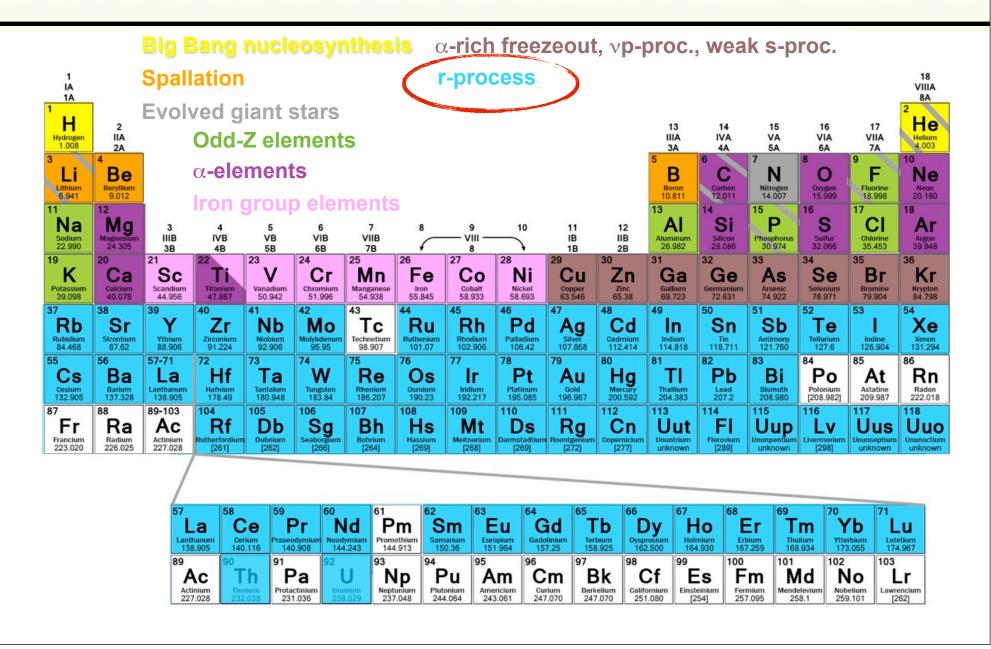

Dwarf
galaxies Halo Disk Bulge Metal-poor halo stars

=> Origin of these stars is unknown

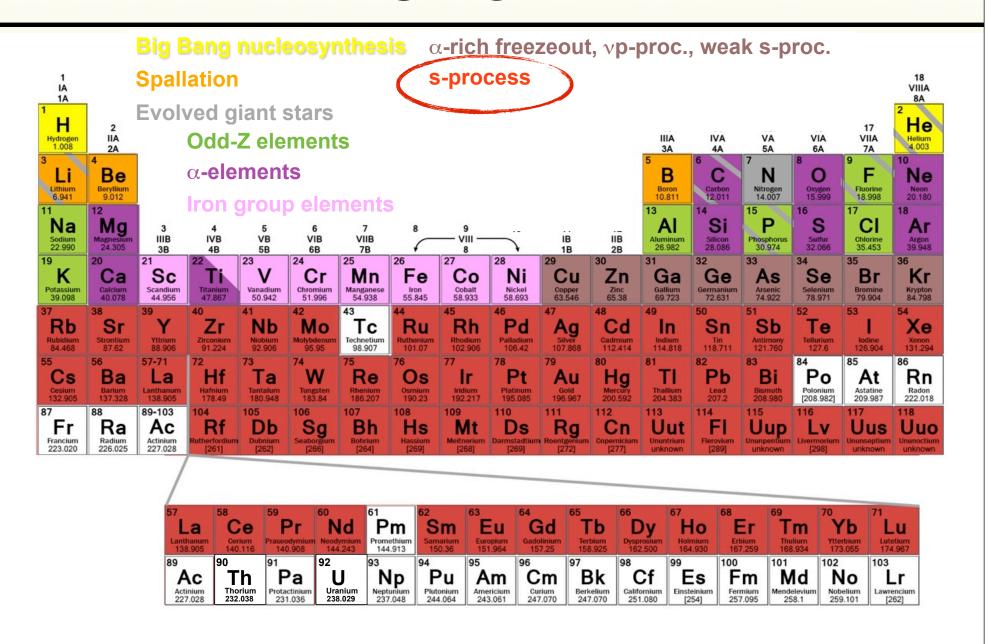
STELLAR ARCHAEOLOGY

Using metal-poor stars to probe the early universe

Low-mass stars with M < 1 M₀: Lifetimes > 10 billion years => they are still around!



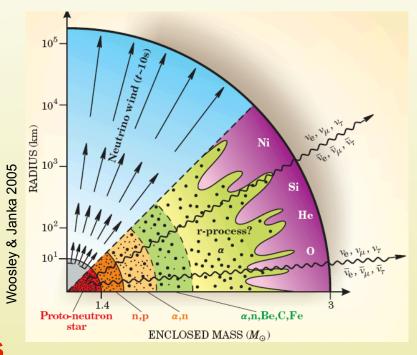
 $[Fe/H] \le -3$ => only ~1 progenitor star produced that iron => only ~1 nucleosynthesis event made heavier elements


THE (DETAILED) ASTRONOMER'S PERIODIC TABLE

			-	Ban allatio		cleos	yntho	esis		ch fro		out, v	p-pro	C., W	eak s	s-pro	C.	
	Evolved giant stars							Weak r-proc., light n-cap. primary proc.										
1	H 1,008	12		_ Oc	dd-Z	eleme	ents		r-pı	roces	S							He 4,003
2	Li 6,939	Be 9,012			elem					ng-liv ioact			${f B}_{10,811}$	$C_{12,011}$	7 N 14.007	8 (O) 15,999	$\mathbf{F}_{18,998}$	$ \begin{array}{c c} & Ne \\ & 20,183 \end{array} $
3	Na 22,990	12 Mg 24,312		= Irc	on gro	oup e	leme	nts			roces	ss)	13 Al 26,982	14 Si 28,086	15 P 30,974	16 S 32,064	17 C1 35,453	18. Ar 39,948
4	19 K 39,102	20 Ca 40,08	21 Sc 44,956	22 Ti 47,88	23 V 50,942	24 Cr 51,996	25 Mn 54,938	26 Fe 55,847	27 Co 58,933	28 Ni 58,69	29 Cu 63,54	30 Zn 65,37	31 Ga 69,72	32 Ge 72,59	33 AS 74.922	34 Se 78,96	35 Br 79,909	36 Kr 83,80
5	37 Rb 85,47	38 Sr 87,62	39 Y 88,905	40 Zr 91,22	41 Nb 92,906	42 Mo	43 Tc (99)	44 Ru 101,07	45 Rh 102.91	46 Pd 106,42	47 Ag 107.87	48 Cd 112,40	49 In 114.82	50 Sn 118.69	51 Sb 121,75	52 Te 127,60	53 I 126,90	54 Xe 131,30
6	55 Cs 132.91	56 Ba 137,34	57 La	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186,2	76 Os 190,2	77 Ir 192,2	78 Pt 195.09	79 Au 196,97	80 Hg	\$1 Tl	82 Pb	83 Bi	84 Po	85 At (210)	86 Rn
7	87 Fr (223)	88 Ra (226)	89 Ac (227)							-			distr	ributi		f sol		bula on)
"6"				58 Ce	59 Pr 140,91	60 Nd 144,24	61 Pm (145)	62 Sm 150,36	63 Eu 151,96	64 Gd 157,25	65 Tb 158,92	66 Dy 162,50	67 Ho 164,93	68 Er 167,26	Tm 168,93	70 Yb 173,04	71 Lu 174,97	
"7"				90 Th 232.04	91 Pa (231)	92 U 238.03	93 Np (237)	94 Pu (242)	95 Am (243)	96 Cm	97 Bk (249)	98 Cf	99 Es	100 Fm (253)	101 Md (256)	102 No (253)	103 Lr	

THE (DETAILED) ASTRONOMER'S PERIODIC TABLE

THE (DETAILED) ASTRONOMER'S PERIODIC TABLE


THE BIG QUESTION

- ★ What is the (dominant) astrophysical site of the r-process?
 - → Core-collapse supernovae
 - → Neutron star mergers
 - → Others (e.g., jet-driven supernovae)
- **★** What is the rate and yield of the event?
- ★ Is the dominant site changing over cosmic time?

CORE-COLLAPSE SUPERNOVA

(DEATH OF A MASSIVE STAR WITH M > 8 M_o)

Supernovae are <u>common</u>; produce light elements w/ Z<30 in their cores Responsible for these light elements when observed in metal-poor stars

Theoretical element yield:

~10⁻⁶ M_{sun} of total r-process material

 \Rightarrow ~10^{-7.5} M_{sun} of Eu (per event)

Pros

- √ Metal-poor stars only have one/few progenitors
- ✓ Provides the fast enrichment needed; small & steady r-process yields

Con Theoretical difficulties for r-process nucleosynthesis to produce elements heavier than Ba (e.g. Arcones et al.)

NEUTRON STAR BINARY MERGER

(TWO COMPACT SUPERNOVA REMNANTS)

Pros Easily produces elements heavier than Ba

Cons Rare One binary per ~1000- 2000 supernovae Long(er) enrichment timescale => Inspiral time >100 Myr

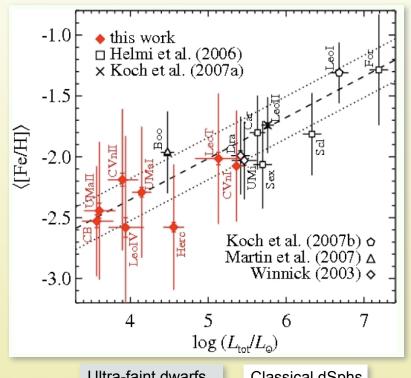
Yield: ~10⁻³ -10⁻² M_{sun} of r-process material (across all n-cap elements)

=> ~10^{-4.5} M_{sun} of Eu (per event)

Additional (indirect) evidence for local r-process nucleosynthesis

- 1) Short gamma-ray bursts: Afterglow from decay of radioactive r-process elements detected (Tanvir et al. 13)
- 2) Radioactive deep sea measurements suggest local neutron star mergers (Wallner et al. 15, Hotokezaka et al. 15)

ULTRA-FAINT DWARF GALAX PROPERTIES (UFDS)


Low luminosity (300 - 3,000 L_{Sun})

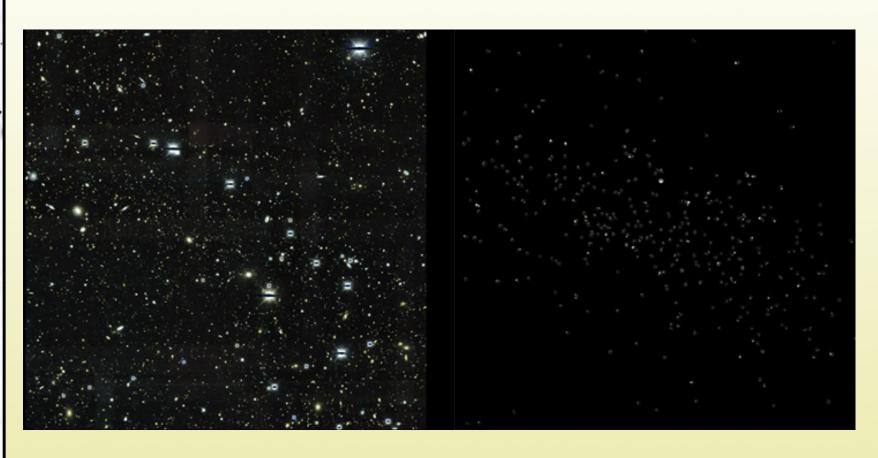
Dark matter-dominated (M/L > 100)

Metal-poor (mean [Fe/H] \sim -2)

Stars are old (mean age 13.3 +/- 1 Gyr)

Few bursts of star formation

Ultra-faint dwarfs

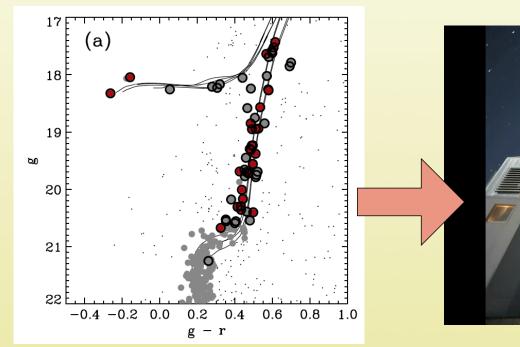

Classical dSphs

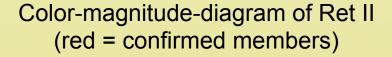
Ideal targets for Dwarf Galaxy Archaeology

Use entire galaxy as fossil record of the early universe.

Bonus: get environmental information because we know where stars were born

MEET RETICULUM II

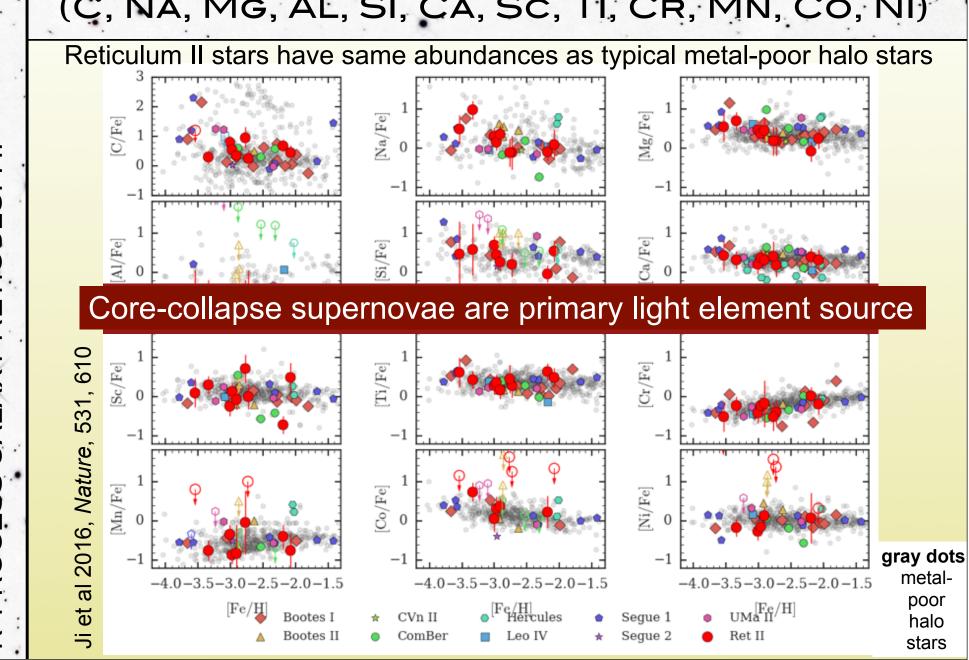

All stars

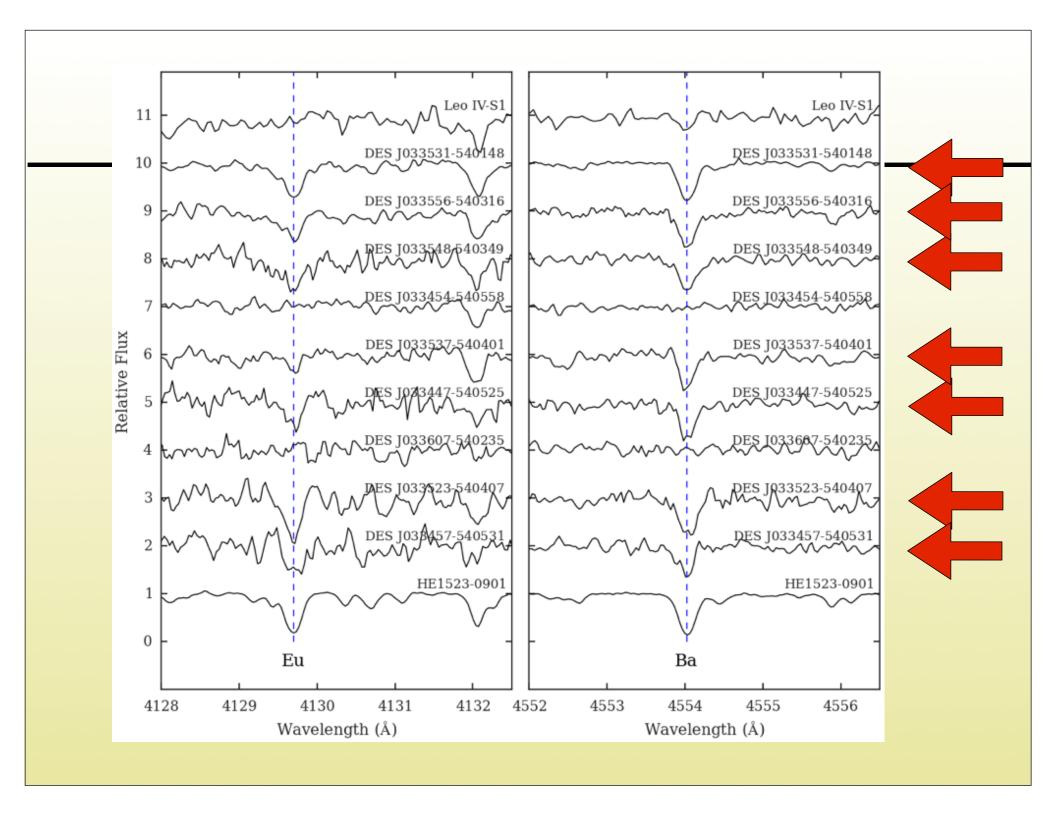

Reticulum II stars

(Dark Energy Survey, 2015)

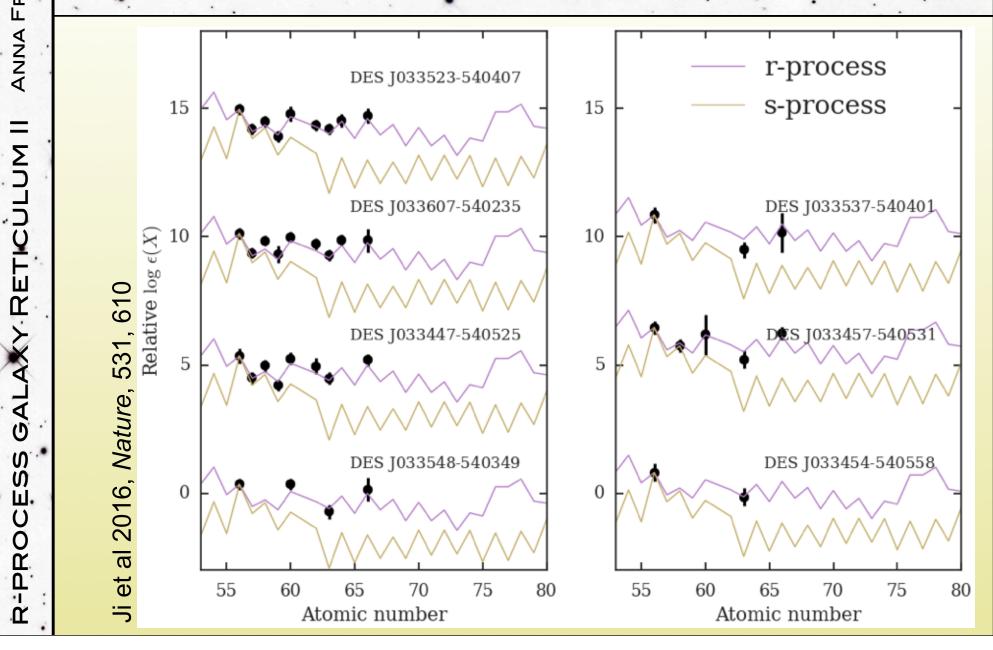
MAGELLAN OBSERVATIONS

Simon et al. 2015: radial velocity members confirm Ret II to be a galaxy Brightest members (V=17-19) observable with high-resolution spectroscopy => Ji et al. (2015) spent 2-3 hours on each of 9 brightest targets (~23h)





Clay 6.5m Magellan telescope (on left) at Las Campanas Observatory, Chile


LIGHT ELEMENT ABUNDANCES

(C, NA, MG, AL, SI, CA, SC, TI, CR, MN, CO, NI)



ALL SEVEN RET II STARS DISPLAY THE R-PROCESS PATTERN

RET II STARS: > 100X HIGHER N-CAPTURE ELEMENT ABUNDANCES THAN OTHER UFDS

DWARF GALAXY ARCHAEOLOGY

(= USING AN ENTIRE DWARF GALAXY TO STUDY THE EARLY UNIVERSE)

How Rare?

Population of 10 UFDs:

- →1 of 10 r-process events
- →Est. stellar mass of *all* UFDs:~2000 SNe expected
- → Consistent w/ expected NSM rate of 1 per 1000-2000 SNe (LIGO will deliver answer in 2+ yrs)

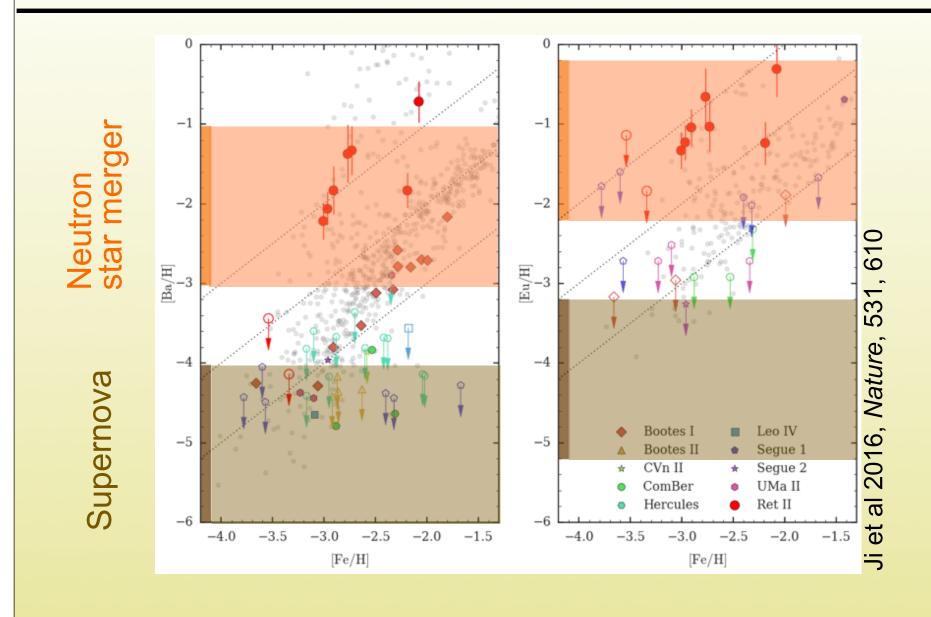
How Prolific?

Estimate gas mass of UFD:

Total gas in UFD galaxy

→ Max. dilution mass: ~107 M_{sun}

Gas swept up by a 10⁵¹erg energy injection into typical ISM

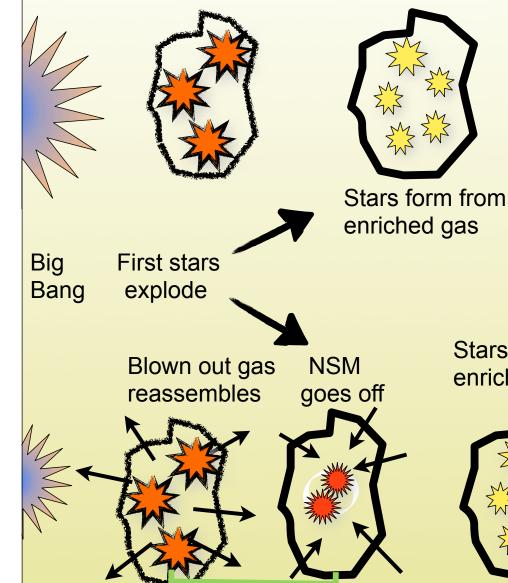

→Min. dilution mass: ~10⁵ M_{sun}

Back-of-the-envelope calculation

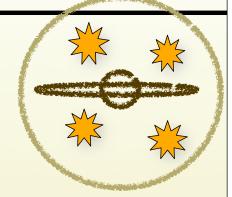
Mix NSM yield mass of $10^{-4.5}$ M_{sun} into 10^{6} M_{sun} of H gas (can NOW be estimated!) => [Eu/H] = -1.2 is abundance of next-generation star

=> Agrees with Ret II abundance results!

RET II ABUNDANCES CONSISTENT W/ NEUTRON-STAR MERGER YIELD



RARE AND PROLIFIC JET-DRIVEN SUPERNOVA REMAINS POSSIBILITY


...but ordinary supernovae remain ruled out!

ENRICHMENT AND STAR FORMATION TIMELINE

delay of 100 Myr

~13 Gyr of galaxy assembly

...are found in the Milky Way today

Stars form from enriched gas

~13 Gyr of galaxy assembly ...are found in dwarf galaxies today

ANSWERS TO THE BIG QUESTION

- ★ What is the (dominant) astrophysical site of the r-process?
 - → Core-collapse supe → No, but a rare and prolific site
 - → Neutron star me Consistent w/ Ret II abundances
 - → Others (e.g., jet-driven super Remain possible
- **★** What is the rate and yield of the event?
 - → ~1 event per 2000 SN; ~10^{-2.5} M_{sun} of r-process
- ★ Is the dominant site changing over cosmic time?

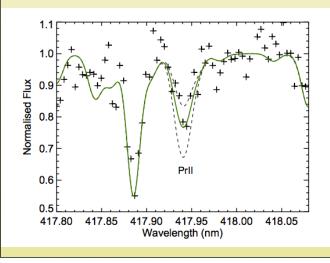
Probably not!

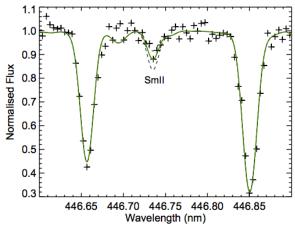
ANYTHING ELSE TO LEARN?

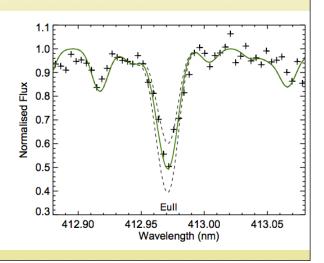
A puzzle: Chemical Enrichment in Ret II

Need to explain: 7+1 r-process-rich, 2 n-capture poor stars

- → Sequential bursts of star formation? n-cap poor stars have lower [Fe/H]
- ➡ Inhomogeneous metal mixing?
 Seems unlikely given homogeneity of light elements
- → Accretion of other, smaller galaxy?
 No more than 1 accreted galaxy possible (Griffen et al. 2016, subm.)


Ideal system to model given all these obs constraints!


IS RETICULUM II THE ONLY R-PROCESS GALAXY?


Nope!

Feb 2017: newly discovered UFD Tucana III hosts at least 1 mildly r-process enriched star with [Fe/H] = -2.25!

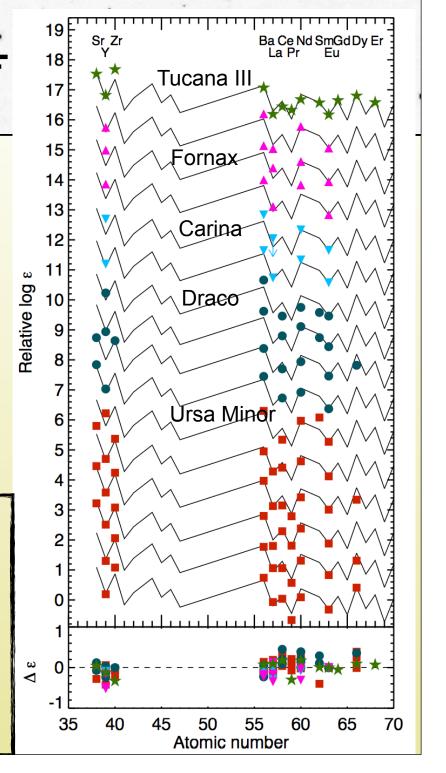
=> 2/12 UFDs show strong r-process enrichment

R-PROCESS OPERATES IN DWARF GALAX<u>IES</u>

20 rl stars in

13 r II stars in

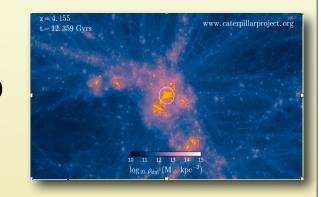
- Tucana III
- Ursa Minor
- Draco
- Sculptor
- Fornax
- Carina
- -2.5 < [Fe/H] < -0.8
- 0.3 < [Eu/Fe] < 1.0


- Reticulum II -3.0 < [Fe/H] < -2.1
- Ursa Minor 1.0 < [Eu/Fe] < 2.1
- Draco
- Fornax

How can a variety of dwarfs have so

- => Internal or external enrichment?
- => Different dilution masses?

different r-process levels?


=> Different accretion history (accreted r-process stars)?

A NEW KIND OF CHEMICAL TAGGING

Tracing galaxy assembly w/ r-process stars & r-process galaxies

- Recall: The halo formed from accreted systems:
- r-process stars trace that assembly process: i.e., they trace the fraction of r-process dwarfs! -- we can determine that fraction
- Significant r-process enrichment in
- 2/12 ultra-faint dwarf galaxies: ~15% of all UFD
- 5/12 classical dwarf galaxies: ~40% of all dSph

- In the halo:
- ~25-30 rll stars (published): ~5% of metal-poor stars
- ~40 rl stars (publ) + dozens (unpubl.): ~20-30% of metal-poor stars

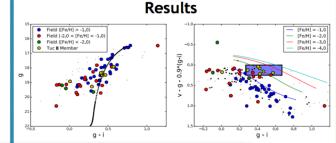
Use existence of r-process pattern as a tag

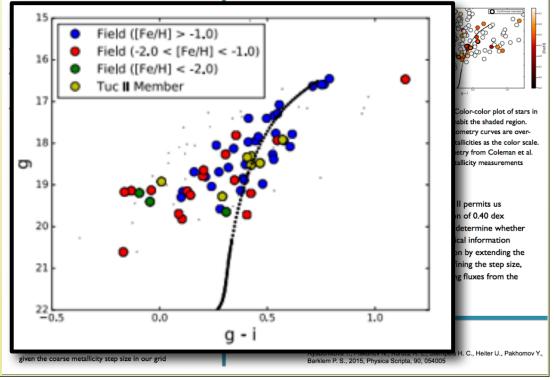
FINDING STARS IN DWARF GALAXIES

- Photometric searches more efficient than spectroscopic ones, but get less information
- => Get metallicities along the RGB
- Pilot study: deep SkyMapper observations of Tucana II & Sculptor:
- u, g, i, and Ca K v filter
- Chiti et al. 2017, in prep.

Photometric searches for metal-poor stars in the Sculptor and Tucana II dwarf galaxies

1


Anirudh Chiti¹, Anna Frebel¹, Dongwon Kim², Helmut Jerjen²


¹Massachusetts Institute of Technology ²Australian National University

Introduction

Metal-poor stars in dwarf galaxies have provided key insights on early chemical evolution. However, searches for metal-poor stars in dwarf galaxies have excluded the faintest stars (V > 19) and are affected by the preponderance of halo stars due to efficiency limitations from spectroscopy.

Searching for and characterizing metal-poor stars with photometry (imaging) is a promising venue to address these bottlenecks. Collecting photometry is less time-intensive than spectroscopy and orders of magnitude more stars can be observed simultaneously. However, extracting chemical information from photometry requires novel filters and analysis

Abdu Abohalima

JINABASE

A NEW DATABASE OF METAL-POOR STARS

	প্ত		The Joint Institute for Nuclear Astro							
_			EMP Database			<u>-x</u>				
JINA	***					JINA				
71111						31117				
	Home	Query/Plot	Search	Referenc	es	Contact				
			Query data from databa	se!						
			C ,							
			Data for axes							
		v.,		o						
		A-4	axis Fe + / H + From							
		y-a	axis Ba ‡ / Fe ‡ From	o o						
			olar abundance for normalization Asplund 20	100						
L		34	Siar abundance for normalization Asplund 20	09 \$						
			User defined criteria							
L			+ Add criteria Remove criteria -							
			Filters							
	1 t d -t	8 1-11		0W						
	Location of stars	Stellar phase		Specific element signs						
	 Select/Deselect All 		ct/Deselect All	Select/Desele						
	Bulge	Subg		r-I rich						
	 Classical Dwarfs 	≥ Dwar		r-II rich						
	Ultra-faint Dwarfs	⊮ Horiz	contal branch	s-rich						
				r/s stars						
				CEMP						
1 L				□ CEMP-no						
			References							
		Select by Author and year	ar: First Author/s Frebel, Roederer Year	ange: From 1990 To 2017						
		Select by Autiful and yea	Precei, noederer	ange. 110111 [1990] 10 [2017]						
ш	Select/Deselect All	Cohen & Huang(2009)	☐ Ji et al. (201	6a)	Ren et al. (2012)					
1	Afsar et al. (2016)	Cohen et al. (2013)	□ Ji et al. (201		Rich et al. (2009)					
	Allen et al. (2012)	Collet et al. (2006)	Johnson & I		Roederer et al. (2008)					
	Andrievsky et al. (2009)	Cowan et al. (2002)	Johnson &	Johnson & Bolte(2002b) Roederer et al. (2009)						
	Andrievsky et al. (2010)	Cui et al. (2013)	Johnson & I	3olte (2004)	Roederer et al. (2010)					
	Aoki et al. (2001)	Feltzing et al. (2009)	Jonsell et al	. (2005)	Roederer et al. (2012a)					
L	Aoki et al. (2002a)	Francois (2016)	□ Jonsell et al	. (2006)	Roederer et al. (2012b)					
			Customize output table							
			+ Add element Remove element -	1						
H										
	Select/Deselect All	Science key	 Radial velocity 	□ I mag	□ Z					
	□ ID	CEMP key	RV bibcode	□ J mag	□ Vmic					
	Priority key	Location	Umag	□ H mag	□ Upper limits key	- 1				
	✓ Reference	Stellar type	B mag	□ K mag						
L	Star name	□ RA	□ V mag	□ Teff						
			Customize plot							
		₹ Plot/Show	w duplicate stars Plot upper limits	Show legend for plot						
L		Flovoilor	- Flor opportunite	onen regens for proc						
		Plot		Show data table						

THE FUTURE IS HERE

The first glimpse of the incredible potential of UFDs for early universe studies

From nuclear astrophysics to near-field cosmology

- ✓ Clean nucleosynthesis event(s) w/ actual information on the <u>site</u> and <u>environment</u>
- → Unprecedented astrophysics constraints for nuclear physics, early chemical evolution, first galaxy formation, metal mixing processes, galaxy assembly, etc.
- ✓ New dwarf galaxies are still being discovered (e.g. in Dark Energy Survey)
- → New observable target stars; firm up fraction of r-process ultra-faint dwarf galaxies
- ✓Only stars w/ V≤19mag can be observed w/ current telescopes (= only few stars per galaxy!)
- New telescopes are needed with high-resolution spectrographs, i.e. GCLEF on GMT

25m Giant Magellan Telescope (GMT), from 2020

RETICULUM II WAS ENRICHED BY A RARE, PROLIFIC AND DELAYED R-PROCESS EVENT

A typical core-collapse supernova could not be responsible for the Ret II r-process signature!

Can't you increase the # of supernovae to get higher yield?

- No, 1000+ supernovae would disrupt the system
- → Need to be just one/few massive events.

Aren't NSM taking too long to enrich the galaxy?

- → After the few (initial) supernovae, it takes time for the system to reassemble again (~100 Myr)
- → Minimum time scales for coalesence is ~100 Myr