The origins and processing of cosmic dust

Forging connections workshop MSU, June 26 – 29, 2017

Lars Mattsson

Nordita

Large amounts of dust at high redshift

Bertoldi et al. (2003, A&A, 406, L55), Michalowski et al. (2011) and many others....

The cosmic matter cycle

Dust destruction

- Destruction may be induced by passage of SN shocks.
- Fragmentation by passage of SN shocks in combination with more efficient destruction of small grains (Slavin, Jones & Tielens 2004) may lead to a dust destruction timescale which is inversely proportional to the mass density of dust.
- Hydrodynamic instabilities and magnetic fields play an important role also here.
- What happens to the dust grains when a strong shock passes without destruction due to sputtering? Where do the grains end up due to instabilities and the decoupling between dust and gas?

AGB stars and dust formation

Grain nucleation – difficult!

Grain growth – easier!

Decin et al. (2010, Nature, 467, 64)

AGB stars? Nope!

(Michalowski et al. 2010)

SN dust works, but...

- Very little warm dust observed in SNe, < 10⁻² M_{sun} (e.g. Wooden et al. 1993; Elmhamdi et al. 2003; Kotak et al. 2009; Meikle et al. 2011)
- But still some controversy over large cold dust masses in SNRs...
- Suggest a constant or declining dust-to-metals ratio, which could be a problem (Mattsson 2011).

Gall et al. (2011, A&AR, 19, 43)

SN dust works, but...

SN1987A

- 100% dust efficiency?
- All metals are locked up in dust – no free metals to enter the ISM?

SN 1987 A

- 0.5 0.7 M_{sun} of cold dust if there is only C-dust,
 2.4 M_{sun} if only silicates (Matsuura et al. 2011).
- The progenitor was a 15 20 M_{sun} star.
- An 18 M_{sun} star produces 0.13 M_{sun} of silicon (Woosley & Weaver 1995).
- $A_{\text{silicates}} = 121.41 \rightarrow M_{\text{silicates}} < 0.56 M_{\text{sun}}$
- $M_C = 0.22 M_{sun} \rightarrow M_{c-dust} < 0.22 M_{sun}$

Dust-to-metals gradient

Mattsson, Andersen & Munkhammar (2012) Mattsson & Andersen (2012) Mattsson et al. (2014)

Condensation!

De Cia et al. (2016); Jenkins (2009)

Dust budget crisis

Conclusions so far

- Maximum time to build large dust masses:
 < 400 500 Myr.
- SNe can produce dust rapidly, but also destroy dust – A catch 22!
- The universe have been at least as dusty and possibly even more dusty at earlier epochs. But how?
- What source is compensating for the dust destruction? We NEED a replenishment mechanism!

Conclusions so far

- Maximum time to build large dust masses:
 < 400 500 Myr.
- SNe can produce dust rapidly, but also destroy dust – A catch 22!
- The universe have been at least as dusty and possibly even more dusty at earlier epochs. But how?
- What source is compensating for the dust destruction? We NEED a replenishment mechanism!

The cosmic matter cycle

The cosmic matter cycle

Epstein drag

"Swedish compass"

Epstein drag

Simulation with PENCIL code

- Central region of cold (T ~10K) molecular gas cloud in ISM.
- Non-isothermal: entropy equation & temperature structure.
- A range of different grain sizes included in dust phase.
- Stochastically forced turbulence.
- "Only" 256³ resolution because non-isothermal and spectrum of grain sizes. (A 1024³ isothermal simulation is in progress.)

Simulation with PENCIL code

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \, \mathbf{v}) = 0,\tag{1}$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = \nabla P + \mathbf{F}_{\text{visc}} + \mathbf{F}_{\text{force}}, \quad \mathbf{F}_{\text{visc}} = \nabla \cdot (2\nu \rho \, \mathbf{S})$$
 (2)

$$\rho T \frac{\partial s}{\partial t} + \rho T \mathbf{v} \cdot \nabla s = 2\nu \rho \mathbf{S}^2 + \mathcal{H} - \mathcal{L}, \tag{3}$$

$$\frac{\partial \mathbf{v}_{d}}{\partial t} + \mathbf{v}_{d} \cdot \nabla \mathbf{v}_{d} = \frac{\mathbf{v} - \mathbf{v}_{d}}{\tau_{s}}$$

$$\tau_{\rm s} = \frac{\rho_{\rm gr}}{\rho} \frac{a}{\langle v_{\rm th} \rangle}$$

Simulation with PENCIL code

Table 1
Properties of Giant Molecular Clouds, Clumps, and Cores (Goldsmith 1987;
Cernicharo 1991).

Properties	GMC	Clump	Core
Size (pc)	20-60	3-20	0,5-3
Density (cm ⁻³)	100-300	$10^3 - 10^4$	10^4-10^6
Mass (M_{\odot})	$10^4 - 10^6$	$10^3 - 10^4$	10-10 ³
Linewidth (km s ⁻¹)	6-15	4-12	1-3
Temperature (K)	7-15	15-40	30-100

Turbulence in a box

Turbulence in a box

Turbulence in a box

Gas-density PDF

Gas-density PDF

Dust-to-gas PDF

Dust-to-gas PDF

Dust-to-gas PDF

Clustering

Calculation following Bec et al. (2007, PRL, 98, 084502):

Clustering

The cosmic matter cycle

Coagulation

Smoluchowski (coagulation) equation:

$$\frac{\partial f}{\partial t} = \frac{1}{2} \sum_{j=1}^{i-1} C(m_i - m_j, m_j) f(m_i - m_j, t) f(m_j, t) - \sum_{j=1}^{\infty} C(m_i, m_j) f(m_i, t) f(m_j, t),$$

$$\frac{\partial f}{\partial t} = \frac{1}{2} \int_0^m C(m - m', m') f(m - m', t) f(m', t) dm' - f(m, t) \int_0^\infty C(m, m') f(m', t) dm',$$

(+ fragmentation as a "reverse process")

Condensation

Condensation equation:

$$\frac{dm}{dt} = 4\pi a^2 \alpha_{\rm s} \langle v_{\rm mol} \rangle \rho_{\rm mol}(t),$$

$$\xi_{c,k}(t) = \frac{da}{dt} = \alpha_s \langle v_{\text{mol}} \rangle \frac{A_{\text{eff},j} \rho_k(t) - \rho_d(t)}{A_k \rho_{\text{gr}}},$$

Compressibility: condensation

$$\mathcal{K}_{\ell}(t) = \int_{0}^{\infty} a^{\ell} f(a, t) \, da.$$

$$\frac{d\mathcal{K}_{\ell}}{dt} = \ell \xi(t) \, \mathcal{K}_{\ell-1}(t) \qquad \rightarrow \qquad \frac{d\langle a^{\ell} \rangle}{dt} = \ell \, \xi(t) \, \langle a^{\ell-1} \rangle$$

With dynamics (Lagrangian, dust-gas velocity coupling):

$$\frac{d\mathcal{K}_{\ell}}{dt} = \ell \xi(t) \, \mathcal{K}_{\ell-1}(t) - \mathcal{K}_{\ell}(t) \, (\nabla \cdot \mathbf{v})_{\mathrm{L}}$$

$$\frac{d\langle a^{\ell}\rangle}{dt} = \frac{1}{\mathcal{K}_0} \left(\frac{d\mathcal{K}_{\ell}}{dt} - \frac{\mathcal{K}_{\ell}}{\mathcal{K}_0} \frac{d\mathcal{K}_0}{dt} \right) \rightarrow \left(\frac{d\langle a^{\ell}\rangle}{dt} = \ell \, \xi(t) \, \langle a^{\ell-1}\rangle \right)$$

Compressibility: condensation

$$\mathcal{K}_{\ell} = \bar{\mathcal{K}}_{\ell} + \mathcal{K}'_{\ell}, \quad \xi = \bar{\xi} + \xi'$$

$$\bar{Q}(t) = \frac{1}{2\tau} \int_{t-\tau}^{t+\tau} Q(t') dt'$$

Results in the following averaged equations:

$$\frac{d\bar{\mathcal{K}}_{\ell}}{dt} = \ell \bar{\xi} \, \bar{\mathcal{K}}_{\ell-1} \left[+ \, \ell \overline{\xi' \, \mathcal{K}'_{\ell-1}} \right] - \overline{\mathcal{K}'_{\ell} \, (\nabla \cdot \mathbf{v})'_{L}}$$

$$\overline{(\nabla \cdot \mathbf{v})_{L}} = 0, \quad \overline{\mathcal{K}'_{0}(\nabla \cdot \mathbf{v})'_{L}} = 0.$$

Conclusions

- Stars produced the first dust grains, but most of the interstellar dust may have condensed in MCs.
- Under all circumstances, interstellar dust condensation is needed as a replenishment mechanism.
- Compressible turbulence leads to gas-dust separation and clustering of grains:
 - Coagulation rate increases due to the clustering.
 - Condensation rate can be affected in various ways and may effectively decrease due to the separation.

