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NuGrid :

Main research activities: 
 production of stellar yields sets for GCE and data mining
 Nuclear and stellar uncertainties studies
 Comparison of stellar data with observations 

Source: ADS Bumblebee



  

Production of Carbon (and Oxygen)
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Z and [Fe/H]

Keller+2014, Nature

Bessel+2015, ApJ
Nordlander+2017, A&A
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The Keller star (SM0313-6708): 
✗ metal-poor 
✗ [C/Fe] >> Sun

@Monday, I. Roederer
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 – 8.9 million years
15M

sun
 – 13 million years

5M
sun

 – 0.13 Gyrs

3M
sun

 – 0.53 Gyrs

2M
sun

 – 1.51 Gyrs

1.65M
sun

 – 2.6 Gyrs

HR diagram

log(T
eff

[K])

Massive stars and low-mass stars are both needed for 
galactic archaeology (e.g., CEMP stars)

CEMP stars = Carbon Enhanced Metal Poor stars
@Monday, A. Frebel



  From: Alex Heger

6 Low-mass stars
Intermediate-mass stars

High-mass stars

See also Jones et al. 2013, ApJ

0.2–0.4



  

12C(α,γ)16O rate: deBoer et al. 2017, Rev.Mod.Phys
PreSN evolution of massive stars

(25M
sun

)

@Monday, M. Wiescher @Monday, A. Heger
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Not ejected - NS+fallback

M=20Msun,  Z=0.0001
Ritter+2017, in prep.
@UVIC astrolab

In the plot:
abundances at the end of the core He-burning vs CCSN abundances
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Herwig ARAA 2005

AGB stars: much weaker dependence on the 12C(α,γ)16O rate. Strong dependence 
on the uncertainties on the convective-boundary mixing mechanisms (CBM).
E.g., Herwig et al. 2006, de Boer et al. 2017, RevModPhys

@Tuesday, A. Karakas



  

M=2Msun,  Z=0.0001

Not ejected - WD

M=2Msun, TDU event
astrolab, @UVIC
Set1ext, Ritter+2017 in prep.
data.nugridstars.org
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CBM



  

CEMP stars family, with and without binary interaction

JINA-CEE/NuGrid NupyCEE

Yoon et al. 2016, ApJ

Highlights:

● There are CEMP-s, CEMP-r,
CEMP-sr and CEMP-no stars.

● Bimodal C enrichment (e.g., 
Spite et al. 2013, Yoon et al. 2016)

11



  

What happens to carbon when it is 
ejected in the ISM?

● Nuclear physics is done, it is time for GCE

● JINA-CEE/NuGrid NupyCEE
● Jacob Brazier BSc project,

@Hull Uni 
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What happens to carbon when it is 
ejected in the ISM?

● Nuclear physics is done, it is time for GCE
● Formation of molecules: 

– gas phase reactions

– grain surface reactions

● The questions are:
– What is the impact of the C12(α,γ)O16 and of CBM on the 

production of carbon in the early galaxy?

– What is their impact on the astrochemistry in the early galaxy?

– What is the impact on the formation of complex organic molecules?

– What is the impact on dust formation?
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+ 
http://kromepackage.org/
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Nitrogen production
Cold CNO cycle Hot CNO cycle

Wiescher et al. 2010, Annu. Rev. Nucl. Part. Sci.
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Kobayashi+2011

Popular scenario: production
of N in the Early Galaxy due to
fast rotating massive stars
(e.g., Chiappini+2006 A&A Lett.)



  

Can rotating models produce enough N15?

@ KADoNiS

Massive stars make N15:

● Detections of extragalactic 15N as hydrogen cyanide isotope HC15N in the 
star-forming regions of the Large Magellanic Cloud (LMC) and the core of the 
(post-)starburst galaxy NGC 4945. 14N/15N ratio ~ 100 (Chin et al. 1999, ApJ 512).

● Isotopic ratios at z = 0.89: molecular line absorption in front of the quasar PKS 1830-211:
low N14/N15 (Muller+2006 A&A)
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Nano-diamonds

Learning about N production in CCSNe with 
presolar grains

F. Banhart (MPI for Metal Research, Stuttgart)

SiC-X grain

From Reto Trappitsch (Uni of Chicago)
Graphite (and a SiC 

in the center)

Croat et al. 2010, AJ 139

Hoppe 2010 PoS
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1919

Cas A
11000 ly

~ 300 years ago

unknown
? - (today in a lab)
~ 4.5-5 Gyrs ago

CCSN remnant Presolar grain from an old CCSN

See Grefenstette et al. 2014, Nature
(NuSTAR data)

Zinner 2014, Tr. Geochem.

From Reto Trappitsch (Uni of Chicago)

@Monday, C. Fryer
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Presolar grains and H ingestion in CCSNe: 
results confirmed 
Liu, …, MP et al. 2016, 2017 – ApJ/ApJL

Highlights:
 

● Ingestion of H in hotter He-burning 
convective regions in massive stars;

● Alive H is found when the SN shock reaches 
He-burning layers

+ Herwig et al. 2014, ApJL 792
+ Woodward et al. 2015, ApJ 798 
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Model 25T
Metallicity = Z=0.02
Explosive He shell nucleosynthesis
with H ingested still alive

He-shell layersCentre of 
the star

H in the He shell



  

Impact on the CE of 14N/15N:

(MP+ 2015 ApJL)
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We need this !



  

Kobayashi+2011

Production of intermediate-mass elements

Impact of CO-shell mergers on 
nucleosynthesis:
● An ideal case study for nuclear astrophysics
● Ritter+2017, arXiv:1704.05985
● @C.Ritter poster for GCE; 
● @R. Andrassy talk, Thursday.

Uncertainty
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Nucleosynthesis flows for C and O fusion

X_C12 = 0.0001
----------------------
T9      c12c12        c12o16     o16o16
1.5     4.77e-15    1.55e-15     1.86e-16
2.0     2.41e-12    4.61e-12     3.73e-12
2.5     1.86e-10    1.27e-09     4.38e-09   
3.0     4.79e-09    7.94e-08     8.54e-07

X_C12 = 0.001
----------------------
T9      c12c12        c12o16     o16o16
1.5     4.77e-13    1.55e-14     1.86e-16
2.0     2.41e-10    4.61e-11     3.73e-12
2.5     1.86e-08    1.27e-08     4.38e-09   
3.0     4.79e-07    7.94e-07     8.54e-07

X_C12 = 0.01
----------------------
T9      c12c12        c12o16     o16o16
1.5     4.77e-11    1.55e-13     1.86e-16
2.0     2.41e-08    4.61e-10     3.73e-12
2.5     1.86e-06    1.27e-07     4.38e-09   
3.0     4.79e-05    7.94e-06     8.54e-07

● Values: e.g., X_C12/12 * X_O16/16 * rate

● C12+C12, C12+O16 and O16+O16 all 
have three channels, with relative 
uncertainties.

@Monday, M. Wiescher
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C12+C12:

C12+O16:

O16+O16:

High uncertainty for nucleosynthesis, in particular for isotopic ratios
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Summary

● Production of C, N and intermediate-mass 
elements in the early universe: comparing with 
the observations.

● Convective-reactive events in stars and nuclear 
astrophysics: the CO shell merger case  

● Production of stellar yields for CE and 
astrochemistry. From nuclear astrophysics to a 
cosmochemistry framework?
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www.nugridstars.org
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