Forging Connections between Intergalactic and Circumgalactic Media with Lyman-α Absorption

Daniele Sorini
PhD student
Max Planck Institute for Astronomy (MPIA)

Supervisor: Joseph Hennawi (UCSB-MPIA)

Collaborators : Jose Oñorbe (MPIA), Zarija Lukić (LBNL), Annalisa Pillepich (MPIA)

Forging Connections: From Nuclei to the Cosmic Web East Lansing, Michigan 26th June 2017

IGM

Modeling physics from LSS down to galaxies

Probing the CGM with Quasar Spectra

Probing the CGM with Quasar Spectra

- Lyα absorption
 at small b
 [e.g. Rudie+ 12, 13, Rakic+ 12,
 Tumlinson+ 13, Werk+ 14,
 Turner+ 14]
- Lyα absorption at large
 b from BOSS
 [Font-Ribera+ 12, 13]
- Simulations at small b [e.g. Turner+ 17, Fumagalli+ 14, Hopkins+14, Meiksin+ 15,17]

26th June 2017

Probing the CGM with Quasar Spectra

- Lyα absorption
 at small b
 [e.g. Rudie+ 12, 13, Rakic+ 12,
 Tumlinson+ 13, Werk+ 14,
 Turner+ 14]
- Lyα absorption at large
 b from BOSS
 [Font-Ribera+ 12, 13]
- Simulations at small b
 [e.g. Turner+ 17, Fumagalli+ 14,
 Hopkins+14, Meiksin+ 15,17]

1st-time extension to large *b*

Feedback and CGM Temperature

- ILLUSTRIS: L=106.5 cMpc, star formation, stellar and AGN feedback
 [Vogelsberger+ 14]
- NYX: L=142.5 cMpc, no feedback, no star formation, no metals
 [Almgren+ 13, Lukić+ 15]

Feedback and CGM Temperature

- ILLUSTRIS: L=106.5 cMpc, star formation, stellar and AGN feedback
 [Vogelsberger+ 14]
- NYX: L=142.5 cMpc, no feedback, no star formation, no metals
 [Almgren+ 13, Lukić+ 15]

Feedback and CGM Temperature

- ILLUSTRIS: L=106.5 cMpc, star formation, stellar and AGN feedback
 [Vogelsberger+ 14]
- NYX: L=142.5 cMpc, no feedback, no star formation, no metals
 [Almgren+ 13, Lukić+ 15]

Lya Absorption around Quasar Hosts

Lya Absorption around Quasar Hosts

Lya Absorption around Quasar Hosts

SMALL SEPARATIONS

Data not matched

POSSIBLE SOLUTIONS

Cooler CGM

[e.g. Stern+ 16]

SMALL SEPARATIONS

Data not matched

POSSIBLE SOLUTIONS

- Cooler CGM [e.g. Stern+ 16]
- Gas velocity / extra turbulence in CGM

[e.g. Sorini+ 16, Gaikwad+ 17]

SMALL SEPARATIONS

Data not matched

POSSIBLE SOLUTIONS

- Cooler CGM[e.g. Stern+ 16]
- Gas velocity / extra turbulence in CGM [e.g. Sorini+ 16, Gaikwad+ 17]
- Resolution

[e.g. Hopkins+ 14, Fauchere-Giguere+ 15, Crighton+ 15, Gutcke+ 16]

SMALL SEPARATIONS

Data not matched

POSSIBLE SOLUTIONS

- Cooler CGM [e.g. Stern+ 16]
- Gas velocity / extra turbulence in CGM [e.g. Sorini+ 16, Gaikwad+ 17]
- Resolution
 [e.g. Hopkins+ 14, FauchereGiguere+ 15, Crighton+ 15,
 Gutcke+ 16]

Excellent observable to constrain simulations

SMALL SEPARATIONS

Data not matched

POSSIBLE SOLUTIONS

- Cooler CGM[e.g. Stern+ 16]
- Gas velocity / extra turbulence in CGM [e.g. Sorini+ 16, Gaikwad+ 17]
- Resolution
 [e.g. Hopkins+ 14, FauchereGiguere+ 15, Crighton+ 15,
 Gutcke+ 16]

Excellent observable to constrain simulations

Lya Absorption around DLAs

Conclusions & Outlook

- Precise Lyα absorption data at large separations reproduced well by simulations
- Matching Lyα absorption at small separations challenging for cosmological simulations
- Increase precision of measurements up to b~1 Mpc → discriminate among different feedback implementations