

Impact of stellar triple alpha reaction enhancement on the r-process

Motivation

The rapid neutron capture process is responsible for the synthesis of approximately half the nuclides heavier than iron[1]. As temperatures and densities decrease and nuclear statistical equilibrium break down the r-process begins with the build up of ¹²C and heavier seed nuclei from neutrons and alpha-particles. It was recently pointed out that one of the pathways to produce ¹²C r-process seeds, the triple alpha reaction, may be significantly enhanced at extreme stellar conditions compared to standard predictions[2].

Rate enhancement

- triple alpha reaction rate is proportional to the Hoyle state width
- neutron proton and α inelastic scattering induced de-excitation of the Hoyle state result in the enhancement
- in stellar condition such as neutrino driven wind with high neutron density and temperature the rate can enhanced up to 10³
- lower the neutron to seed ratio and the robust of r-process

Sensitivity study

- gauge the response of varying nuclear astrophysical parameter to figure out which one play more important role
- Methodology:
- use SkyNet: a nucleosynthesis network calculation[3] include:7841 nuclides 95465 reactions

S. Jin^{1,2,3} L. Roberts^{1,2} S. Austin^{1,2} H. Schatz^{1,2} 1 National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA 2 Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, MI 48824, USA 3 Institute of Modern Physics, Chinese Academy of Science, Lanzhou, Gansu 730000, P. R. China

use temperature and density parametrization three trajectories:

(1)
$$\rho = \begin{cases} \rho_0 e^{-t/\tau}, & x < 3\tau \\ \rho_0 (\frac{3*\tau}{e*t})^3, & x \ge 3\tau \end{cases}$$

- (2) neutrino driven wind from young hot neutron stars[4]
- (3) neutrino driven wind based on hydrodynamic simulations[5]

use range of parameters spanning typical conditions in neutrino driven winds and neutron star mergers:

entropy (S) ~T³/ρ

expansion time(tau): time of density fall to 1/e of peak

- **Ye**: the electron to neutron ratio, 0.45
- compare abundances of enhanced enhanced 3 α rate

Result

							_
р	tau=20	tau=7.1	tau=3.5	tau=1.8	tau=0.9	tau=0.5	ta
S=200	0.55	0.35	0.43	0.38	0.17	0.09	
S=150	0.86	0.55	0.44	0.56	0.43	0.24	
S=100	1.54	0.83	0.52	0.33	0.20	0.11	
S=50	0.85	0.45	0.24	0.13	0.06	0.03	

p: accumulated rate of change to reflect the impact $p = \sum_{k} \left(\frac{\frac{Y_{enhanced} - Y_{normal}}{Y_{normal}} \times 100 \right)^{k * \frac{Y_{normal}^{k}}{\sum_{i} Y_{normal}^{i}}}$

- 28 parametric combinations by using trajectory (1) • impact small, at most 3.05 for S=100, tau=40, Ye=0.45

The abundance and the rate of change at most impact point