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CNAO measurements: 26 curved dipoles

� Nominal maximum field [T] 1.4992
� Bending radius [m] 4.231
� Bending angle [deg] 22.5
� Magnet gap height [mm] 72
� Magnetic length (@ max.) [m] 1.6772
� Overall length [m] 1.9046
� Good field region [mm] ± 60 (hor); ± 28 (vert) 
� Field Quality [∆B/Bnom]    ± 2*10-4 

� Nominal Current [A] 2800
� Maximum Current [A] 3000
� I nominal / I injection ratio 17
� Field stabilization time 500 ms 

� Curved fluxmetre choice :

⇒ designed to measure integrated field and its uniformity along the bent beam path.

⇒ allows small difference between the measured integrated field and the integrated field on the real 

trajectories of the beam.

⇒ method based on bucked signals appears to be the most appropriate for the high homogeneity of the 

field requested.
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Magnet specificity: optimal homogeneity

� Optimal homogeneity for injection current (168A) and nominal current (2800A) in 
the 2D design.

Due to:

Minimun pole profil compensation to 

optimize homogeneity at low current.

Coils positioned close to the poles to 

compensate the saturation of the poles 

at nominal current.

Disadvantage:

Limited accessibility for the shimming due to the coil positioning.
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Fluxmeter making

Fluxmeter

- 11 curved coils (+ 1 spare ) - Coils size = 6 x 8 x 2755 mm.
Mounted on a rigid support, and maintained by glass fiber pins (15 mm spacing).

- A cover protect the coils ⇒⇒⇒⇒ the reference coil can slide on it without creating any 
vibration on the fluxmeter’s coils.

- 14 Delrin wheels ⇒⇒⇒⇒ to roll the fluxmeter longitudinally.

- Connections of the coils with twisted pair cables to a CANNON connector.

Reference coil

- Reference coil curved in the same way as the fluxmeter’s coil.

- Stability guaranteed by its glass fibre support (116 mm width, 10 mm height).

- Precise positioning of the reference coil on each coil of the fluxmeter with a 
system based on vertical rods . 
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Calibration method

Fluxmeter with 12 
coils

Mobile reference coil

Positioning system for 
reference coil

The fluxmeter is cross-calibrated with respect 

to the additional curved reference coil. 

(For CNAO application we don’t need absolute 

field values, but a relative comparison between 

the 26 dipoles and the reference magnet.)

ABSOLUTE VALUES

Long curved coils cannot be calibrated a 

CERN (calibration magnet with aperture large 

enough not available) so absolute accuracy is 

limited to few 10-3.

Their areas taken into account are their 

surfaces before being bent.

RELATIVE VALUE

By comparison with a reference coil, which can 

be placed next to any other, the relative 

accuracy of all coils is better than 10-4.
Plate for a precise 

fluxmeter’s positioning
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Current measurement cycles used

� Field measurement done between t1 and t2 to study dynamic effects for ramp up and 

ramp down current.

� For every measurement the current is ramped up to the maximum current Imax during 

the cycle ⇒ the same hysteresis cycle followed for any measurements.

� Timing precision = 1 ms  (Timings handled with a VME crate).
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Shimming

- Different shimming configurations tested: 

⇒ shims with straight edge
⇒ shims with 45° chamfers

- With 45° chamfers ⇒ improvement for field 

homogeneity over straight edge. They reduce peak 

fields near the end plates ⇒ but not as good as 

expected. 

- Original shimming bolts (magnetic) did perturb low 
field close to the poles (Due to the bolt head volume).

- Non magnetic (stainless steel) bolts did not allow to 
obtain an homogeneity within the specifications close 

to the poles (Lack of magnetic volume in the holes).

- Bi-metal bolts (Fe-Inox) did allow to fulfill the 

homogeneity in the total good field region.
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Bi-metal 
bolts effect
on shimming

Bi-metal bolts:

⇒ allow ± 10-4 field 

homogeneity adjustment 

(We couldn’t obtain it only 

with shimming plates).

⇒ allow the magnet to 

fulfill the specifications for 

both I injection and I 

nominal.

⇒ widen the good field 

area on the Y axis.

Inox boltsInox bolts

FeFe--InoxInox boltsbolts
Welding

Inox

Fe

∫Bdl homogeneity with inox bolts, Y = + 29 mm
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∫Bdl homogeneity with fer-inox bolts, Y = +29 mm
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- Strong Eddy current effects, field stabilized more than 2 seconds after the current flat-top start, with 
growing current.

- Even with phosphated metal sheets. (2nd prototype)

- Eddy current not proportional to di/dt (curves below) ⇒⇒⇒⇒ CNAO magnet behaves like a short magnet.

- Needs at least 30 cycles to stabilize the remanent field ⇒⇒⇒⇒ Problem due to the only hot-rolled yoke metal 
sheets ? 
(CNAO magnets are built using only hot-rolled metal sheets, without a following cold-rolled process as on 
other former magnets).

Magnet dynamic behavior

dVref/Vref  for di/dt = 1250, 2500, 5000 A/sec
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- Amplitude of the transient at the end of ramp-up (undershoot) vs. flat-top level

→ The time constant does not depend on either ramp rate or flat-top level 

Magnet dynamic behavior

Undershoot at end of ramp-up
(pulsed current from I=112A @ 2500 A/s)
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CNAO MBS 02 - Integrated field transient at end of ramp-up
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Eddy current with growing and decreasing current

� With decreasing pulsed current, Eddy current effects are much less important. 

It takes 4 times less to be within 2.10-4 of the stabilized field.

� Due to the steel permeability curve:

3000 A  ⇒ low permeability ⇒ long Eddy current effects

168 A    ⇒ higher permeability ⇒ short Eddy current effects
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� Eddy current effects can be limited with an “over current peak” and a controlled negative di/dt

(curves below).

� Limitation ⇒ each current flat-top needs its own peak et negative di/dt curve for an efficient Eddy 
current control.

� Finally not applicable to CNAO project because of the variety of pulsed current.

Eddy current effects controlled with a negative di/dt

 Eddy current controlled with a negative di/dt (3 vectors) 
Current pulsed from 112 to 2800 A -  
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“Memory” effect

� Left curve below: magnet pulsed form 168 to 3000 A (di/dt 5000 A/sec), immediately followed  with a negative 
ramp (di/dt - 5000 A/sec) from 3000 to 2800 A.

� After this current peak, the field curve general shape is the same than for a measure without any peak current. 

� The magnet did act as if there was a “memory” effect of the Eddy currents.

� In non saturated state (1400 A curve) we can partly compensate the ramp up Eddy currents by a similar ramp 
down, but in a saturated state (2800 A curve) there is a “memory” of the highest Eddy currents.

"Memory"  effect  - I measure = 2800 A 
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� Real-time field measurement fed back to machine control system (closed loop).

� Real-time field adjustment  ⇒ ⇒ ⇒ ⇒ allows to always obtain the wanted field, independently of the 
last current cycle used.

� Automatic compensation of short term as well as long term drifts and better reproducibility.

� Eddy current control for faster operation.

� More safety for patients

Conclusion

The B-train solution for Eddy current control

Efficiency of bi-metal bolts for high quality homogeneity adjustment

______________


