
Practical Implementation of Lattice QCD Simulation on SIMD Machines 461

Fig. 2. The site index ordering for the layout 1 (left) and 2 (right) in the double
precision case. We use a three-dimensional analogues of the right panel for the layout
2 in single precision.

Data Layout. It is important to choose a proper data layout to attain high
affinity to the SIMD vector registers. As a 512-bit register corresponds to 8 or
16 floating point numbers in double and single precision, respectively, we rear-
range the date in these units. We implement the code in C++ template classes
and instantiate them for the double and float data types individually. There are
several ways in ordering the real and imaginary parts of complex variables. Con-
sidering the number of SIMD registers and the number of the degree of freedom
on each site, we decide to place the real and imaginary parts as consecutive data
on the memory. The color and spinor components are distributed to separate reg-
isters. Instead several sites are packed into a SIMD vector; complex variables of
float (double) type on eight (four) sites are processed simultaneously. To allocate
the data on the memory, we use std::vector in the standard C++ template
library with providing an aligned allocator.

There is still flexibility in folding the lattice sites into a data array. We com-
pare two different data layouts displayed in Fig. 2. To avoid lengthy description,
we assume the single precision case in the following. In the first case (layout 1),
several sites in x-coordinate composes a SIMD vector. This requires the local
lattice size in x-direction to be a multiple of eight. Since the x-coordinate is the
most inner coordinate of our index, it is a simplest extension of a non-vectorized
layout. To minimize performance penalty of boundary copy, the MPI paralleliza-
tion is not applied in x-direction.

The second layout (layout 2) was introduced in Ref. [7]. As the right panel of
Fig. 2 explains, the local lattice is divided into several subdomains each provides
one complex number to one SIMD vector. With our implementation this restricts
the local lattice sizes in y-, z-, and t-directions to be even. While there is no
restriction in x-direction for layout 2, throughout this paper we do not MPI
parallelize in x-direction similarly to the layout 1.

Using Intrinsics. The arithmetic operations on the SIMD variables are explic-
itly managed using the intrinsics. We wrap them in inline functions, which cover


