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Abstract 

An RF cavity simulator can be used to test control electronics. One way to make such 

simulators is with the use of an FPGA. We configured a Xilinx® XtremeDSP Development Kit, 

Virtex-4 Edition, for doing such simulations. Also, am interface was created in MATLAB using 

C MEX-files. This allowed easy communication with the FPGA. After the FPGA was 

configured, it was tested. The output was that expected but still some minor fixes have to be 

done. Essentially, the core part of the simulator was successfully done, but some components 

need to be added to make the actual simulator. 
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Introduction 

Fermilab uses RF cavities, such as the one on Figure 1, to accelerate particle beams to 

high energies. To test the electronics used to control these cavities, a real-time simulator is 

useful. One way to do such simulations is with the use of a field-programmable gate array 

(FPGA). An FPGA is a device containing programmable logic components, and programmable 

interconnects. These components can be used to perform basic logical functions, such as AND, 

OR, and XOR, or more complex combinational functions such as mathematical functions.   

An FPGA is usually slower than an application-specific integrated circuit (ASIC), cannot 

handle designs as complex, and draw more power, but they can be re-programmed in the field, 

and are cheaper to produce. FPGAs have a wide range of applications including ASIC 

prototyping, computer vision, speech recognition and digital signal processing. It can also be 

used for simulating many systems, including RF cavities.  

The hardware used in this project is a Xilinx® XtremeDSP Development Kit, Virtex-4 

Edition. To configure such system to do these simulations, firmware must be written, in this case 

using VHDL. The code must configure the module to process a signal using its ADC inputs and 

output it through a DAC. Also, the code must implement a set of equations capable of simulating 

an RF cavity.  

 

Figure 1. An RF cavity. 
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The process of getting from a physical system to a firmware implementation is shown in 

Figure 2. 

 

Figure 2. Process of getting from a physical system to a firmware implementation 

A continuous time model of the physical system, in this case an RF cavity, consisting of 

differential equations representing the system’s behavior is transformed into a discrete time 

model, consisting of difference equations. These difference equations are then implemented in 

firmware.  Depending on these equation’s coefficients, the FPGA can simulate or control various 

physical systems. Registers are used to change the values of theses coefficients.  

An interface must be created to be able to manipulate the hardware. This interface will be 

created in MATLAB using C MEX-files. MEX stands for MATLAB executable. MEX-files are 

dynamically linked subroutines produced from C or Fortran source code that, when compiled, 

can be run from within MATLAB in the same way as a MATLAB M-file or built in functions.  

Physical system 

Continuous time model 

Discrete time model 
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Hardware 

A Xilinx® XtremeDSP Development Kit, Virtex-4 Edition, shown in Figure 3, was used 

for this project. The XtremeDSP development board consists of a motherboard referred as the 

“BenONE-Kit Motherboard” populated with a module referred as the “BenADDA DIME-II 

module”. The specifications are the following: 

• BenONE-Kit Motherboard: 

• Supports the supplied BenADDA DIME-II module only 

• Spartan-II FPGA for 3.3V/5V PCI or USB interface 

• Host interfacing via 3.3V/5V PCI 32-bit/33-MHz or USB v1.1 interfaces 

• Status LEDs 

• JTAG configuration headers 

• User 0.1" pitch pin headers connected directly to user programmable FPGA I/O 

• BenADDA DIME-II module: 

• Virtex-4 User FPGA: XC4VSX35-10FF668 

• 2 independent ADC channels: AD6645 ADC (14-bits up to 105 MSPS) 

• 2 independent DAC channels: AD9772 DAC (14-bits up to 160 MSPS) 

• Support for external clock, on board oscillator and programmable clocks                         

• Two banks of ZBT-SRAM (133MHz, 512Kx32-bits per bank)  

• Multiple Clocking Options: Internal & External 
 
• Status LEDs 
 

• External power supply (US Mains cable with separate UK, European or Australian mains 
adaptors) 
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• Wide ranging input (90 - 264Vac), multiple output, power supply, generating; 
 

• +5 Volts @ 5A, +12 Volts @ 2A, -12 Volts @ 800mA 
 

• USB v1.1 compatible cable, 2 meters long 
 
• 5 MCX to BNC cables for connecting to the ADC / DAC and external clock connectors 
 
• PCI Back plate and 2 screws 
 
• 2x BNC jack to jack adaptors for use in loop back configurations 
 
• Large blue Kit carrying case 

Figure 3. Xilinx® XtremeDSP Development Kit, Virtex-4 Edition. A) With case. B) Without case 

Development software 

 In order to write, compile and run the code, the following software were used: 

• Xilinx ISE Project Navigator Version 9.2i 

• Nallatech Fuse Probe Version 210 

• Microsoft Visual C++ 2008 Express Edition Version 3.5 

• MATLAB Version 7.4.0.287 (R2007a) 
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Software 

In order to simulate a physical system, several software components were created, as shown in 

Figure 3.  

 

Figure 3. Software hierarchy 

Firmware 

To configure the card, firmware was written in VHDL. A program was written so the 

card would have registers to store data and be able to read from the ADC, process the input 

signal, and feed it through the DAC. To do this, we started using working examples provided by 

the manufacturer. One of the examples was an interface, which contained working registers and 

FIFO, and the other example contained an ADC to DAC connection which read a signal from the 

ADC and was outputted through the DAC. These two examples where then merged and 

modified. One 14-bit register called the address register and two 31-bits registers for input and 

output were added.   

Also, a set of instructions were added to modify the data acquired from the ADC. The 

continuous differential equations for an RCL circuit, 
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suitable for numerical computing, where 0u is the input from the ADC and 0y is the output fed 

to the DAC.  

The values of the coefficients can be modified to simulate many electrical systems, 

including RF cavities. In order to write a value to the variables a, b, and c, ( will always be 0) the 

code was modified so that a value had to be given to the address register to specify the variable 

to be written and the value to be assigned to the variable had to be given to the input register. 

The next table shows which value of the address register corresponds to which variable: 

Address register Variable 

1 11a

2 12a

3 21a

4 22a

5 0b

6 1b

7 0c

8 1c
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Intermediate level 

To communicate with the card, an interpreted language called DIMEscript provided by 

the board manufacturer is used. This language does not need to compile, and it is very fast to run 

a script, but has several flaws. Since this is an interpreted language, it is read line-by-line and the 

appropriate action is taken when the line is read. This causes errors to be found only when the 

line with the error is being executed. To remove these interfacing issues, a FUSE C/C++ API 

was used. Using libraries created by the manufacturer, a simple code was written to open the 

card, write and read the registers, and then close the card. Every time the code was executed, it 

took a fair amount of time to open and configure the card.  

To solve this problem, MATLAB MEX-files were written. This allowed us to open the 

card, assign values to all of the variables and then close the card whenever desired with fair ease. 

The C code was divided into four parts: open card, close card, write register, read register. Each 

part is an individual MEX-file written in C and contained special MEX functions to pass 

variables to and from Matlab. Each file can be called as a function in Matlab. The open card 

simply opened the card and obtains the necessary handles to carry out all the necessary 

instructions, which are the Locate Handle and the Dime Handle, configured the FPGA with the 

bit files specified in the C code and returned the handles into a Matlab array. Close card has both 

handles as inputs and it simply closes the card. Write register has as first input the Dime Handle, 

second input as the address of the variable to be written, and third input as a number. Read 

register has as first input the Dime Handle, second input as the address of the variable, and 
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returns the value of the output register. These functions allowed for easier I/O and to change the 

coefficients at anytime, without having to re-open and re-close the card. 

High Level GUI 

After all the functions have been defined, a graphical user interface (GUI) can be implemented in 

a high level language, like MATLAB. Unfortunately, we did not have enough time to develop 

this GUI. 

Testing 

To test if the hardware configuration and the interface were working correctly, we 

initialized all of the a’s to 0 and the b’s and c’s to 322 - 1, and the data inputted should not 

changed at all. To process the data, the code converted the all negative inputs into its 2’s 

complement. But when the data was outputted, it was just treated as really large positive data 

thus giving an erroneous output (Figure 2.A) To solve this problem, a all the data to be outputted 

through the DAC was converted back from its 2’s complement, thus giving the correct output.  

(a) With 2’s complement    (b) Without 2’s complement 

 Figure 3. Orange wave is the input and the blue wave is the output.  
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Then, to simulate a RF cavity, a rotation matrix (3) was used to process the input. The output 

expected is a decaying sine wave. The next MATLAB script was ran to assign the values to the 

coefficients of the difference equations: 
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theta= 2*pi/10 
lambda = .865 
fullscale = 2^31-1 

a11= uint32((fullscale)*(lambda)*(cos(theta))) 
a12= uint32((fullscale)*(lambda)*(sin(theta))) 
a21= uint32(mod(double(2^32)-double(a12),2^32)); 
a22= a11; 
b0 = fullscale*(1-lambda) 
b1 = 0 
c0 = fullscale 
c1 = 0 

writereg(x(2),1,a11) 
writereg(x(2),2,a12) 
writereg(x(2),3,a21) 
writereg(x(2),4,a22) 
writereg(x(2),5,b0) 
writereg(x(2),6,b1) 
writereg(x(2),7,c0) 
writereg(x(2),8,c1) 
 
The value of lambda was varied and as it approximates 1, the time it took the sine wave 

to completely decay would increase. But when lambda was above 0.865, the output behaved 

unexpectedly. A pulse was given as an input and the output was observed. 
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lambda = 0.866                         lambda = 0.865 

lambda = 0.86                 lambda = 0.85 

Figure 4. Decaying sine wave simulating an RF cavity. 

 

Conclusion 

The card was successfully configured to simulate a decaying sine wave even though more 

components need to be added for making the actual simulator. The equations were successfully 

implemented and tested. An interface was created in MATLAB to control the card with fair ease. 

Also, not only this system can simulate RF cavities, but it can be programmed to simulate many 

other physical systems. 
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