Dark Matter, Supersymmetry, and Accounting for the WMAP Haze

Gabriel Caceres

Advisor: Dr. Dan Hooper

Theoretical Astrophysics
Fermi National Accelerator Laboratory

SIST Final Presentation August 5, 2008

Galactic Scale:

Rotational Curves show that galaxies rotate faster than what is expected from the luminous mass. This also gives us an idea of the distribution of dark matter

Cluster Scale:

Gravitational lensing shows that there's more mass than what can be observed

http://chandra.harvard.edu/photo/2003/apm08279/more.html

Cosmological Scale:

■ From the Cosmic Microwave Background (CMB) we can tell that the universe is made up of ~23% DM (compared to ~5% baryonic matter)

August 5, 2008

Candidates and Detection

Main Focus:
Weakly Interacting
Massive Particle
(WIMP)

- Many Proposed Explanations:
 - Axions
 - Massive Compact Halo Object (MACHOs)
 - Modified Gravity
 - And More!

Candidates and Detection

- Main Focus:
 - Weakly Interacting Massive Particle (WIMP)
 - Non-baryonic matter

- Many Proposed **Explanations:**
 - Axions
 - Massive Compact Halo Object (MACHOs)
 - Modified Gravity
 - And More!

Candidates and Detection

- Main Focus:
 - <u>Weakly Interacting</u>

 <u>Massive Particle</u>

 (WIMP)
 - Non-baryonic matter
 - Doesn't interact through the electromagnetic or the strong force

- Many Proposed Explanations:
 - Axions
 - Massive Compact Halo Object (MACHOs)
 - Modified Gravity
 - And More!

Broken symmetry between Fermions (spin ½) and Bosons (integer spin)

- Broken symmetry between Fermions (spin ½) and Bosons (integer spin)
- New particles introduced

- Broken symmetry between Fermions (spin ½) and Bosons (integer spin)
- New particles introduced
- Neutralino LSP, Dark Matter candidate

- Broken symmetry between Fermions (spin ½) and Bosons (integer spin)
- New particles introduced
- Neutralino LSP, Dark Matter candidate
- ~120 free parameters

 Constrained Minimal Supersymmetry Standard Model (CMSSM) reduces free parameters through theoretically oriented assumptions

- Constrained Minimal Supersymmetry Standard Model (CMSSM) reduces free parameters through theoretically oriented assumptions
- Through 5 parameters, the entire particle spectrum can be calculated (here using the DarkSUSY package):

- Constrained Minimal Supersymmetry Standard Model (CMSSM) reduces free parameters through theoretically oriented assumptions
- Through 5 parameters, the entire particle spectrum can be calculated (here using the DarkSUSY package):
 - Universal gaugino mass: m_{1/2}
 - Universal scalar mass: m_o
 - Universal tri-linear scalar coupling: A₀
 - Ratio of v.e.v. of the two Higgs doublets: tan ß
 - Sign of the Higgsino mass parameter:

(Done for μ >0, tan β 3,10,35,50 and μ <0, tan β 35,50)

Bulk

(Done for μ >0, tan β 3,10,35,50 and μ <0, tan β 35,50)

Bulk

Coannihilation

(Done for $\mu>0$, $\tan\beta$ 3,10,35,50 and $\mu<0$, $\tan\beta$ 35,50)

Bulk

Coannihilation

(Done for $\mu > 0$, $\tan \beta 3,10,35,50$ and $\mu < 0$, $\tan \beta 35,50$)

(Done for $\mu > 0$, $\tan \beta 3,10,35,50$ and $\mu < 0$, $\tan \beta 35,50$)

Cosmic Microwave Background

Cosmic Microwave Background

Cosmic Microwave Background

WMAP

WMAP: CMB & Galactic Foregrounds...

Dark Matter requirements to produce Haze:

Hooper, Finkbeiner, Dobler 2007

CMSSM Analysis

- Take CMSSM data and calculate cross-section and annihilation modes
- Sample:

CMSSM Analysis

- Compare with Haze requirements
- Sample:

Detection Prospects

Direct Detection

Neutrino Detection

Conclusions

- Much of the CMSSM parameter space provides us with a WIMP which is capable of producing the WMAP Haze
- In particular:
 - Most of the Focus Point and A-funnel regions provide a viable candidate
 - At high tanβ, a fraction of the Bulk region can accommodate a WIMP of the desired properties
 - The stau coannihilation region does not give a WIMP that satisfies the requirements of the WMAP Haze
- Very positive detection prospects for models in the Focus Point region
- For more information see arXiv:0808.0508v1 [hep-ph]

Questions?

(Sample of) Current Evidence

Gravitational lensing shows that there's more mass than visible stars.

<mark>nttp</mark>://chandra.harvard.edu/photo/2006/1e0657/index.ht<mark>ml</mark>

Bullet Cluster shows two clusters colliding leaving the intergalactic gas behind as the dark matter and galaxies

August 5, 2008 continue forward.

Detection Prospects

Direct Detection

Indirect Detection

WMAP: CMB & Galactic Foregrounds...

