

Mike Syphers, Fermilab

Introduction; Magnets; RF Acceleration Transverse Motion; Accelerator Lattice Errors and Adjustments Challenges at High E/L Luminosity Optimization

- Will touch on technology, but mostly discuss the physics of particle accelerators, especially relevant to hadron colliding beams synchrotrons
- Will cover:
- luminosity; how to meet the requirements?
- basic principles; develop "the jargon"
- a few major issues encountered at high energy, luminosity

Fixed Target Energy vs. Collider Energy

- Beam/target particles: $E_{0} \equiv m_{p} c^{2}$

Fixed Target

$$
E, \frac{\vec{p}}{2} \Longleftrightarrow
$$

$$
E^{*}, \vec{p}
$$

$$
E^{*}, 0
$$

$$
\begin{array}{rlrl}
E^{* 2}=\left(m^{*} c^{2}\right)^{2}+(p c)^{2} & =\left[E_{0}+E\right]^{2} \\
& =E_{0}^{2}+2 E_{0} E+\left(E_{0}^{2}+(p c)^{2}\right) & m^{*} c^{2} & =2 E \\
m^{*} c^{2} & =\sqrt{2} E_{0}\left[1+\gamma_{F T}\right]^{1 / 2} & & =2 E_{0} \gamma_{c o l l}
\end{array}
$$

100,000 TV FT synch. $==14 \mathrm{TeV}$ LHC

Nucleon-Nucleon Collisions

- Experiments want "collisions/events" -- rate?
- Fixed Target Experiment: $\mathcal{R}=\left(\frac{\Sigma}{A}\right) \cdot \rho \cdot A \cdot \ell \cdot N_{A} \cdot \dot{N}_{\text {beam }}$

$$
\begin{aligned}
& =\rho N_{A} \ell \dot{N}_{\text {beam }} \cdot \Sigma \\
& \equiv \mathcal{L} \cdot \Sigma
\end{aligned}
$$

$$
\text { ex.: } \quad \mathcal{L}=\rho N_{A} \ell \dot{N}_{\text {beam }}=10^{24} / \mathrm{cm}^{3} \cdot 100 \mathrm{~cm} \cdot 10^{13} / \mathrm{sec}=10^{39} \mathrm{~cm}^{-2} \mathrm{sec}^{-1}
$$

- Bunched-Beam collider:

$$
\begin{aligned}
\mathcal{R} & =\left(\frac{\Sigma}{A}\right) \cdot N \cdot(f \cdot N) \\
& =\frac{f N^{2}}{A} \cdot \Sigma \\
\mathcal{L} & \equiv \frac{f N^{2}}{A} \quad\left(10^{34} \mathrm{~cm}^{-2} \mathrm{sec}^{-1} \text { for LHC) }\right)
\end{aligned}
$$

- Bunched beam is natural in collider that "accelerates" (more later)

$$
\mathcal{L}=\frac{f_{0} B N^{2}}{A}
$$

$$
f_{0}=\text { rev. frequency }
$$

$$
B=\text { no. bunches }
$$

- In ideal case, particles are "lost" only due to "collisions":

$$
B \dot{N}=-\mathcal{L} \Sigma n
$$

($n=$ no. of detectors receiving luminosity \mathcal{L})

- So, in this ideal case,

$$
\mathcal{L}(t)=\frac{\mathcal{L}_{0}}{\left[1+\left(\frac{n \mathcal{L}_{0} \Sigma}{B N_{0}}\right) t\right]^{2}}
$$

Ultimate Number of Collisions
since $\mathcal{R}=\mathcal{L} \cdot \Sigma$ then, \#events $=\int \mathcal{L}(t) d t \cdot \Sigma$
so, our integrated luminosity is

$$
I(T) \equiv \int_{0}^{T} \mathcal{L}(t) d t=\frac{\mathcal{L}_{0} T}{1+\mathcal{L}_{0} T\left(n \Sigma / B N_{0}\right)}=I_{0} \cdot \frac{\mathcal{L}_{0} T / I_{0}}{1+\mathcal{L}_{0} T / I_{0}}
$$

asymptotic limit:

$$
I_{0} \equiv \frac{B N_{0}}{n \Sigma}
$$

So, ...

$$
\mathcal{L}=\frac{f_{0} B N^{2}}{A}
$$

(will come back to luminosity at the end)

How to Make Collisions?

- Simple Model of Synchrotron:
- Accelerating device + magnetic field to bring particle back to accelerate again
- Field Strength -- determines size, ultimate energy of collider
- ex:

$$
\rho=\frac{p}{e B} ; R=\rho / f \quad(\underset{\text { "packing fraction" }}{(f)}
$$

$$
B=1.8 \mathrm{~T}, \quad p=450 \mathrm{GeV} / \mathrm{c} \quad f=0.85 \rightarrow R \approx 1 \mathrm{~km}
$$

- iron-dominated magnetic fields
N turns per pole of current I

$$
B=\frac{2 \mu_{0} N \cdot I}{d}
$$

- iron will "saturate" at about 2 Tesla
- Superconducting magnets

- field determined by distribution of currents $B_{\theta}=\frac{\mu_{0} J}{2} r$
"Cosine-theta" distribution

$$
B_{x}=0, \quad B_{y}=\frac{\mu_{0} J}{2} d
$$

Superconducting Designs

- Tevatron
- $1^{\text {st }} S C$ accelerator $-4.4 T ; 4^{\circ} K$

Numerical Example:

$$
\begin{aligned}
B & =\frac{\mu_{0} J}{2} d \\
& =\frac{4 \pi \mathrm{~T} \mathrm{~m} / \mathrm{A}}{10^{7}} \frac{1000 \mathrm{~A} / \mathrm{mm}^{2}}{2} \cdot(10 \mathrm{~mm}) \cdot \frac{10^{3} \mathrm{~mm}}{\mathrm{~m}} \\
& =6 \mathrm{~T}
\end{aligned}
$$

Acceleration

Principal of phase stability

- Mcmíllan (u. california) and veksler (Russia)

imagine: particle circulating in field, B; along orbit, arrange particle to pass through a cavity with max. voltage V, oscillating at frequency $h x f_{r e v}$ (where h is an integer); suppose particle arrives near time of zero-crossing
- \quad net acceleration/deceleration $=e V \sin (\omega \Delta t)$
- if arrives late, more voltage is applied; arrives early, gets less

- thus, a restoring force $->$ energy oscíllation \square "Synchrotron Oscillations" in general, lower momentum particles take longer, arrive late gain extra momentum next, slowly raise the strength of B; if raised adiabatically, oscillations continue about the "synchronous" momentum, defined by $p / e=B \cdot R$ for constant R
\square This is the principle behind the synchrotron, used in all major HEP accelerators today Longitudinal Motion
- say ideal particle arrives at phase $\varphi_{s}: \quad \frac{d E_{s}}{d t}=f_{0} e V \sin \phi_{s} \sim \frac{d B}{d t}$
- Particles arriving nearby in phase, and nearby in energy will oscillate about these ideal conditions...
- Phase Space plot:

Regions of
Stability

- Adiabatic increase of bend field generates stable phase space regions; particles oscíllate, follow along
- "bunched" beam; $h=f_{r f} / f_{r e v}=$ \# of possible bunches

Bunched Beam

- Bunch by adiabatically raising voltage of RF cavities

$$
\mathrm{eV}(\mathrm{n})=0.02 \mathrm{keV}
$$

Buckets, Bunches, Batches, ...

- Stable phase space region is called a bucket.
- Boundary is the separatrix; only an approximation
- $\quad \varphi_{s}=0, \pi$-particles outside bucket remain in accelerator "DC beam"
- For other values of $\varphi_{s-\text { - particles outside bucket are lost }}$
- DC beam from injection is lost upon acceleration

Bunches of particles occupy buckets; but not all buckets need be occupied.

- Batches (or, bunch trains) are groupings of bunches formed in specific patterns, often from upstream accelerators

Acceleration

- Stable regions shirnk as begin to accelerate
- If beam phase space area is too large (or if $D C$ beam exists), can lose particles in the process

- In addition to increasing the particle's energy, must keep the beam focused transversely along its journey

D Early accelerators employed what is now called "weak focusing"

$$
B=B_{0}\left(\frac{R_{0}}{r}\right)^{n}
$$

n is determined by adjusting the opening angle between the poles

$$
\begin{aligned}
& d=\infty, n=0 \\
& d=R_{0}, n=1
\end{aligned}
$$

Room for improvement...
With weak focusing, for a given transverse angular deflection,
Thus, aperture ~ radius ~ energy
$x_{\max } \sim \frac{R_{0}}{\sqrt{n}} \theta$
Bevatron (1954)

Could actually sit inside the vacuum chamber!!

Strong FocusingThink of standard focusing scheme as alternating system of focusing and defocusing lenses (today, use quadrupole magnets)

Quadrupole will focus in one transverse plane, but defocus in other; if alternate, can have net focusing in both

- for equally spaced infinite set, net focusing requires $\quad F>L / 2$

$$
F=\text { focal length }, L=\text { spacing }
$$

- FODO cells:

Separated Function
Until late 60's, synchrotron magnets (wedge-shaped variety) both focused and steered the particles in a circle. ("combined function")

- With Fermilab Main Ring and CERN SpS, use "dipole" magnets to steer, and use "quadrupole" magnets to focus

Quadrupole magnets, with alternating field gradients, "focus" particles about the central trajectory -- act like lenses
(1) Thin lens focal length:

Tevatron: $\quad B^{\prime}=77 \mathrm{~T} / \mathrm{m}, \quad \ell=1.7 \mathrm{~m} \rightarrow F=25 \mathrm{~m}$
and $L=30 \mathrm{~m}$

Fermilab Logo

Example: FNAL Main Injector

- Analytical Description: $\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x \quad\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]$
- Equation of Motion:
(Hill's Equation)

$$
x^{\prime \prime}+K(s) x=0
$$

- Nearly simple harmonic; so, assume soln.:

$$
x(s)=A \sqrt{\beta(s)} \sin [\psi(s)+\delta]
$$

- Analytical Description: $\quad \frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x \quad\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]$
- Equation of Motion:
(Hill's Equation)

$$
x^{\prime \prime}+K(s) x=0
$$

- Nearly simple harmonic; so, assume soln.:

$$
x(s)=A \sqrt{\beta(s)} \sin [\psi(s)+\delta]
$$

- Analytical Description: $\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x \quad\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]$
- Equation of Motion:
(Hill's Equation)

$$
x^{\prime \prime}+K(s) x=0
$$

- Nearly simple harmonic; so, assume soln.:

$$
x(s)=A \sqrt{\beta(s)} \sin [\psi(s)+\delta]
$$

- Analytical Description: $\frac{d x^{\prime}}{d s}=\frac{d^{2} x}{d s^{2}}=-\frac{e B^{\prime}(s)}{p} x \quad\left[K(s)=\frac{e}{p} \frac{\partial B_{y}}{\partial x}(s)\right]$
- Equation of Motion:
(Hill's Equation)

$$
x^{\prime \prime}+K(s) x=0
$$

- Nearly simple harmonic; so, assume soln.:

$$
x(s)=A \sqrt{\beta(s)} \sin [\psi(s)+\delta]
$$

Hill's Equation and the "Beta Function"

- So, taking $x^{\prime \prime}+K(s) x=0$ and assuming $x(s)=A \sqrt{\beta(s)} \sin [\psi(s)+\delta]$
- then, differentiating our solution twice, and plugging back into Hill's Equation, we find that for arbitrary $A, \delta \ldots$

$$
\begin{aligned}
x^{\prime \prime}+K(s) x= & A \sqrt{\beta}\left[\psi^{\prime \prime}+\frac{\beta^{\prime}}{\beta} \psi^{\prime}\right] \cos [\psi(s)+\delta] \\
& +A \sqrt{\beta}\left[-\frac{1}{4} \frac{\left(\beta^{\prime}\right)^{2}}{\beta^{2}}+\frac{1}{2} \frac{\beta^{\prime \prime}}{\beta}-\left(\psi^{\prime}\right)^{2}+K\right] \sin [\psi(s)+\delta]=0
\end{aligned}
$$

- since must have $\beta>0$, first term $->\psi^{\prime \prime} / \psi^{\prime}=-\beta^{\prime} / \beta \rightarrow \psi^{\prime}=1 / \beta$
- With this, the remaining term implies differential equation for β
* which is, upon simplifying...

$$
\beta^{\prime \prime \prime}+4 K \beta^{\prime}+\beta K^{\prime}=0
$$

Hill's Equation and Beta (cont'd)
ㅁ Typically, $d K / d s=0$; so, $\quad \beta^{\prime \prime \prime}+4 K \beta^{\prime}=0$

- in a "drift" region (no focusing), $\beta^{\prime \prime \prime}=0$
- Thus, beta function is a parabola in drift regions
- If pass through a waist at $s=0$, then, $\beta(s)=\beta^{*}+\frac{s^{2}}{\beta^{*}}$Through focusing region (quad, say), $K=$ const

$$
\beta^{\prime \prime}+4 K \beta=\text { const. }
$$

- Thus, beta function is a \sin / \cos or \sinh / \cosh function, with an offset
- "driven harmonic oscillator," with constant driving termSo, optical properties of synchrotron (β) are now decoupled from particle properties (A, δ) and accelerator can be designed in terms of optical functions; beam size will be proportional to $\beta^{1 / 2}$

Tune

- Since $x(s)=A \sqrt{\beta(s)} \sin [\psi(s)+\delta]$ and $\psi^{\prime}=1 / \beta$, then the total phase advance around the circumference is given by

$$
\psi_{t o t} \equiv 2 \pi \nu=\oint \frac{d s}{\beta} \quad \text { Note: } \beta \text { is "local wavelength } / 2 \pi \text { " }
$$

The tune, v, is the number of transverse "betatron oscillations" per revolution. The phase advance through one FODO cell is given by

$$
\psi_{\text {cell }}=2 \sin ^{-1}\left(\frac{L}{2 F}\right)
$$

For Tevatron, $L / 2 F=0.6$, and since there are about 100 cells, the total tune is about $100 \times(2 \times 0.6) / 2 \pi \sim 20$. The LHC tunes will be ~ 60.

The function β both determines the envelope and amplitude of transverse motion, as well as the scale of the oscillation period, or wavelength

EmittanceJust as in longitudinal case, we look at the phase space trajectories, here using transverse displacement and angle, $x-x^{\prime}$, in transverse space.

- Viewed at one location, phase space trajectory of a particle is an ellipse:

$$
\gamma x^{2}+2 \alpha x x^{\prime}+\beta x^{\prime 2}=A^{2}
$$

Here, $\quad \alpha \equiv-\frac{1}{2} \beta^{\prime}$
α, β, γ are the Courant-Snyder

$$
\gamma \equiv \frac{1+\alpha^{2}}{\beta}
$$ parameters, or Twiss parameters

While β changes along the circumference, the area of the phase space ellipse $=\pi A^{2}$, and is independent of location!
so, define emittance, ϵ, of the beam as area of phase space ellipse containing some particular fraction of the particles (units $=\mathrm{mm}-\mathrm{mrad}$)

Emittance (cont'd)
Emittance of the particle distribution is thus a measure of beam qualíty.

- At any one location... $\left\langle x^{2}\right\rangle^{1 / 2}(s)=\sqrt{\epsilon \beta(s) / \pi}$
- note: if β in m, ϵ in " π mm-mrad", then x will be in mm
variables x, x^{\prime} are not canonical variables; but x, p_{x} are; the area in $x-p_{x}$ phase space is an adiabatic invariant; so, define a normalized emittance as $\quad \epsilon_{N}=\epsilon \cdot(\gamma v / c)$
The normalized emittance should not change as we make adiabatic changes to the system (e.g., accelerate). Thus, beam size will shrink as $p^{-1 / 2}$ during acceleration.

Effects due to Momentum Distribution

- Beam will have a distribution in momentum space
- Orbits of individual particles will spread out
- B is constant; thus $\Delta R / R \sim \Delta p / p$
- but, path is altered (focused) by the gradient fields... Uniform field:

Synchrotron:

- These orbits are described by the Dispersion Function:

$$
D(s) \equiv \Delta x_{\text {c.o. }}(s) /(\Delta p / p)
$$

- consequently, affects beam size:

$$
\left\langle x^{2}\right\rangle=\epsilon \beta(s) / \pi+D(s)^{2}\left\langle(\Delta p / p)^{2}\right\rangle
$$

Chromaticity

- Focusing effects from the magnets will also depend upon momentum: $\quad x^{\prime \prime}+K(s, p) x=0 \quad K=e\left(\partial B_{y}(s) / \partial x\right) / p$
To give all particles the same tune, regardless of momentum, need a "gradient" which depends upon momentum. Orbits spread out horizontally due to dispersion, can use a sextupole field:

$$
\vec{B}=\frac{1}{2} B^{\prime \prime}\left[2 x y \hat{x}+\left(x^{2}-y^{2}\right) \hat{y}\right]
$$

which gives $\partial B_{y} / \partial x=B^{\prime \prime} x=B^{\prime \prime} D(\Delta p / p)$
i.e., a field gradient which depends upon momentum

- Chromaticity is the variation of tune with momentum; use sextupole magnets to control/adjust; but, now introduces a noulinear transverse field...
(see part II!)

Collider Accelerator Lattice
can build up out of modules
check for overall stability $--x / y$

meets all requirements of the program

- Energy --> circumference, fields, etc.
- spot size at interaction point: β min., $D=0$
- etc...

$$
\beta_{\text {max }, \text { min }}=2 F \sqrt{\frac{1 \pm L / 2 F}{1 \mp L / 2 F}}
$$

Ex: Tevatron cell

$$
\sin (\mu / 2)=L / 2 F=0.6 \longrightarrow \mu \approx 1.2\left(69^{\circ}\right)
$$

$$
\beta_{\max }=2(25 \mathrm{~m}) \sqrt{1.6 / 0.4}=100 \mathrm{~m}
$$

$$
\beta_{\min }=2(25 \mathrm{~m}) \sqrt{0.4 / 1.6}=25 \mathrm{~m}
$$

$$
\nu \approx 100 \times 1.2 / 2 \pi \sim 20
$$

$$
\begin{aligned}
\Delta \beta^{\prime}=\mp 2 \beta / F & \text { through a thin quad } \\
\beta(s)=\beta_{0}-2 \alpha_{0} s+\gamma_{0} s^{2} & \text { between quadrupoles }
\end{aligned}
$$

41 H +4

phase advance $=90^{\circ}$ per cell

- a "matched insertion" that propagates the amplítude functions from their FODO values, through the new region, and reproduces them on the other side
- Here, we see an LHC section used for beam scraping

48 H H

 Interaction Region

- A triplet of quadrupoles located on either side of detector region provide the final focusing of beam
- Triplet and other quadrupoles, located outside the region, used to adjust beam size at the focus
(Tevatron Example)
- quads outside of this region do most of work; like "changing the eyepíece" of a telescope to adjust magnification
 Put it all Together
- make up a
syuchrotron out of FODO cells for bending, a few matched straight sections for special purposes...

共

Part II...

Now, add more realism...

Corrections and Adjustmentscorrection/adjustment systems required for fine control of accelerator:

- correct for misalignment, construction errors, drift, etc.
- adjust operational condítions, tune uptypically, place correctors and instrumentation near quads -- "corrector package"
- control steering, tunes, chromaticíty, etc.

Linear Distortions

Envelope Error (Betabeat) and tune shift due to gradient error

Orbit distortion due to single dipole field error

- Error fields are encountered repeatedly each revolution -- can be resonant with tune
- repeated encounter with a steering (dipole) error produces an orbit distortion: $\Delta x \sim \frac{1}{\sin \pi \nu}$
- thus, avoid integer tunes
- repeated encounter with a focusing (quad) error produces distortion of amplitude fan:
- thus, avoid half-integertunes

$$
\Delta \beta / \beta \sim \frac{1}{\sin 2 \pi \nu}
$$

Nonlinear Resonances
Phase space $w /$ sextupole field present $\left(\sim x^{2}\right)$

- tune dependent: \qquad

$$
v_{k}=0.48
$$

- "dynamic aperture"
- Thus, avoid tune values:

- Always "error fields" in the real accelerator
- coupled motion also generates resonances (sum/difference resonances)
- ingeneral, should avoid: $\quad m \nu_{x} \pm n \nu_{y}=k$

avoid ALL rational tunes???

Through order

$$
k=2
$$

Tune Diagram

Through order

$$
k=3
$$

Tune Spreadmomentum -- chromaticity

- "natural"; field errors in magnets $\sim x^{2}$ where Lisp.nonlinear tune spread
- field terms $\sim x^{2}, x^{3}$, etc.--> "decoherence" of beam position signal

Beam-Beam Force

As particle beams "collide" (very few particles actually "interact" each passage), the fields on one beam affect the particles in the other beam. This "beam-beam" force can be significant.

- on-coming beam can act as a "lens" on the particles, thus changing focusing characteristics of the synchrotron, tunes, etc.

Force $\propto \frac{1-e^{-x^{2} / 2 \sigma^{2}}}{x} \approx \frac{x}{2 \sigma^{2}} \quad$, for small xHead-On: core sees ~linear force; rest of beam, nonlinear force --> tune spread, nonlinear resonances, etc.Long-Range: force $\sim 1 / r->$ for large enough separation, mostly coherent across the bunch, but still some nonlinearityBunch structure (train) means some bunches will experience different effects, increasing the tune spread, etc., of the total beam

Beam-Beam Mitigation

- Beams are "separated" (if not in separate rings of magnets) by electrostatic fields so that the bunches interact only at the detectors
- "Pretzel" or "helical" orbíts separate the beams around the ring
- However, the "long-range" interactions can still affect performance
- new "electron lenses" and current-carrying wires are being investigated which can mitigate the effects of beam-beam interactions, both head-on and long-range

Tevatron: 2 Beams in 1 Pipe

X (mm)

Helical orbits through 4 standard arc cells of the Tevatron

LHC: 2 Beams in 2 Pipes

- Across each interaction region, for about $\mathbf{I} 20 \mathrm{~m}$, the two beams are contained in the same beam pipe
- This would give ~ 30 bunch interactions through the region
- Want a single Head-on collision at the IP, but will still have long-range interactions on either side
- Beam size grows away from IP, and so does separation; can tolerate beams separated by ~ 10 sigma
$d / \sigma=\theta \cdot\left(\beta^{*} / \sigma^{*}\right) \approx 10$
$\longrightarrow \quad \theta=10 \cdot(0.017) /(550) \approx 300 \mu \mathrm{rad}$

Emittance Control

- Electrons radiate extensively at high energies; combined with energy replenishment from RF system, small equilibrium emittances result
- in Hadron colliders; ϵ at collision energy determined by proton source, and its control through the injectorslarger emittance -- smaller luminositylarger emittance growth rates during collisions result in particle loss
- less particles for luminosity!

Injection Errors

- Emittance growth from trajectory errors at injection -- more sensitive at higher energy injection (beam size is smaller)
- Similarly, energy/phase mismatch at injection (injection into "center" of buckets)
- damper systems
- fast corrections of turn-by-turn trajectory
- correct offsets before "decoherence" sets in

Decoherence and Emittance Growth

Phase Space

$$
\operatorname{mean}\left(x_{f}\right)=1.985
$$

Predicted "typical" values:

$$
\text { FRAME }=0 \quad \text { (Amplitude function Mismatch) } \quad \frac{r_{\beta}^{2}+1}{2 \cdot r_{\beta}}=1
$$

(Steering Mismatch)

- Random sources (power supply noise; beam-gas scattering in vacuum tube; ground motion) will alter the oscillation amplitudes of individual particles
- will grow like $\sqrt{ } N$, amplitudes will eventually reach aperture
- Thus, beam lifetime will develop, affecting beam intensity, emittance, and thus luminosity

$$
\begin{aligned}
& \text { 蔍 Diffusion Example } \\
& \text { Phase } \\
& \text { space } \\
& \sigma_{a y}=1.965 \\
& \sigma_{x_{t}}=1.011 \\
& \text { displacement } \\
& t=5 \\
& \text { Beam } \\
& \text { intensity }
\end{aligned}
$$

> tum number
> $\mathrm{W}_{\text {leff }}=2001$

- Noise from RF system (phase noise, voltage noise) will increase the beam longitudinal emittance
- Particles will "leak" out of their original bucket, and circulate around the circumference out of phase with the RF
- "DC Beam"
- Hence, collisions can occur between nominal bunch crossings; of concern for the experiments

DC Beam Generation

Phase, degrees

Energy Deposition
1-10 ReV is high energy, but actually less than one micro-Joule; multiply by $10^{13}-10^{14}$ particles, total energy quite highsources of energy deposition

- Synchrotron Radiation
- Particle diffusion (above)
- Beam abort
- Collisions!

Beam Stored Energy

Tevatron
$-10^{13} \cdot 10^{12} \mathrm{eV} \cdot 1.6 \cdot 10^{-19} \mathrm{~J} / \mathrm{eV} \sim 2 \mathrm{MJ}$
LHC
$-3 \cdot 10^{14} \cdot 710^{12} \mathrm{eV} \cdot 1.6 \cdot 10^{-19} \mathrm{~J} / \mathrm{eV} \sim 300 \mathrm{M}$ each beam!
Power at \mathbb{P}^{\prime} 's -- rate of lost particles x energy: $\quad \mathcal{L} \cdot \Sigma \cdot E$

- Tevatron (at 4K) -- $\sim 4 \mathrm{~W}$ at each detector region
- LHC (at 1.8K) -- 1300 W at each detector region

Synchrotron Radiation

- loss perturn: $\quad \Delta E_{\text {s.r. }}=\frac{4 \pi r_{0}}{3\left(m c^{2}\right)^{3}} E^{4} R\left\langle\frac{1}{\rho}\right\rangle$
- For Tevatron:
- ~ $9 \mathrm{eV} /$ turn/particle; ~ $1 \mathrm{~W} /$ ring
- for LHC:
- ~6700 eV/turn/particle; 3.6 kW/ring
- Vacuum instabilíty -- "electron cloud"
- requires liner for LHC beam tube

Collimation SystemsTevatron -- several collímators/scrapersLHC -- 100 collimators

careful control of collimators, beam trajectory, envelope required

Dec 5, 2003 event in Tev -- ~ I MJ

- can now express in terms of beam physics parameters; ex.: for short, round beams...

$$
\mathcal{L}=\frac{f_{0} B N^{2}}{4 \pi \sigma^{* 2}}=\frac{f_{0} B N^{2} \gamma}{4 \epsilon \beta^{*}}
$$

- If different bunch intensities, different transverse beam emittances for the two beams,

$$
\mathcal{L}=\frac{f_{0} B N_{1} N_{2}}{2 \pi\left(\sigma_{1}^{* 2}+{\left.\sigma_{2}^{* 2}\right)}^{2}=\frac{f_{0} B N_{1} N_{2} \gamma}{2 \beta^{*}\left(\epsilon_{1}+\epsilon_{2}\right)}\right. \text { 五 }}
$$

and assorted other variations...

- If bunches are too long, the rapid increase of the amplitude function away from the interaction "point" reduces luminosity
- Tevatron:

$$
\text { - } \sigma_{s} \approx 2 \beta^{*}
$$

- LDC:

$$
\text { - } \sigma_{s} \ll \beta^{*}
$$

$$
\mathcal{H}=\sqrt{\pi}\left(\frac{\beta^{*}}{\sigma_{z}}\right) e^{\left(\beta^{*} / \sigma_{z}\right)^{2}}\left[1-\operatorname{erf}\left(\beta^{*} / \sigma_{z}\right)\right]
$$

- in Tevatron, bunches spaced far enough apart that next passage by another bunch is outside detector region, after put on separate trajectories.

D in LHC, many more bunches, shorter spacing; if not a crossing angle, would have MANY head-on collisions throughout detector region.

- reduces luminosity somewhat:

$$
\mathcal{L}=\mathcal{L}_{0} \cdot \frac{1}{\sqrt{1+\left(\alpha \sigma_{s} / 2 \sigma^{*}\right)^{2}}}
$$

\section*{| 41 |
| :--- |
| +1 |
 Back to Integrated Luminosity...}

- need to include effect of emittance growth, etc.
- particles will be lost by means other than collisions
- suppose diffusion effects cause $d \epsilon / d t$ (they do!):

- The ultimate goal for the accelerator -- provide largest total number of collisions possible
- So, optimize initial luminosity, according to turn-around time, emittance growth rates, etc. to produce most integrated luminosity per week (say)
- example: recent Tevatron running

Here, weed to
balance the above with the production rate of antiprotons to find optimum running conditions

What's been left out?

Hope have gotten a glimpse of the process...
What, there's more??

- coupling of degrees-of-freedom transverse x / y, trans. to longitudinal
- space charge interactions (mostly low-energies)
- wake fields, impedance, coherent instabilities
- Beam cooling techniques
- RFmanipulations
- Resonant extraction
- crystal collimation
- Magnet, cavity design
- Beam instrumentation and diagnostics

Further Reading
D D. A. Edwards and M.J. Syphers, An introduction to the Physics of High Energy Accelerators, John Wiley \& Sons (1993)

- S. Y. Lee, Accelerator Physics, World Scientific (1999)E.J. N. Wilson, An introduction to Particle Accelerators, Oxford University Press (2001) and many others...
- Conference Proceedings --
- Particle Accelerator Conference (2007,2005,...)
- European Particle Accelerator Conference (2006,2004,...)
- Asian Particle Accelerator conference (2007,2004,...)

Further Schooling...
us Particle Accelerator School:

- http://uspas.fual.gov
- Twice yearly, January /June

CERN Accelerator school:

- http://cas.web.cern.ch
- Spring (specialized topics)
- autumn (intro/intermediate)

