
Supersymmetry

CERN/Fermilab Hadron Collider Physics Summer School

Fermilab, August 18-20, 2008

Stephen P. Martin

Northern Illinois University

Based in part on “A Supersymmetry Primer”, hep-ph/9709356v4 (revised

June 2006).

1



Lecture 2: Masses and Interactions in

the Minimal SUSY Standard Model

• Supersymmetric gauge interactions

• Soft SUSY breaking

• The MSSM superpotential

• R-parity and its consequences

• Soft SUSY breaking in the MSSM

• What flavor teaches us about SUSY breaking

• Planck-scale Mediated SUSY Breaking

• “minimal supergravity” models (mSUGRA)
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Recall: The superpotential W = M ijφiφj + yijkφiφjφk determines

all non-gauge masses and interactions.

Both scalars and fermions have squared mass matrix MikM
kj .

The Feynman rules for our interacting chiral supermultiple ts are:

Yukawa interactions:
j k

i

−iyijk
j k

i

−iyijk

Scalar interactions:
j k

i

−iM inynjk

j k

i

−iMiny
njk

i j

k ℓ

−iyijnykℓn

But these are actually not the most important interactions for collider physics.

3



Supersymmetric Gauge Theories

A gauge or vector supermultiplet contains physical fields:

• a gauge bosonAaµ

• a gaugino λaα.

The index a runs over the gauge group generators [1, 2, . . . , 8 for SU(3)C ;

1, 2, 3 for SU(2)L; 1 for U(1)Y ].

Suppose the gauge coupling constant is g and the structure constants of the

group are fabc. The Lagrangian for the gauge supermultiplet is:

L = − 1

4
Fµν

a F a
µν − iλ†aσµ∇µλ

a + 1

2
DaDa

where Da is a real spin-0 auxiliary field with no kinetic term, and

∇µλ
a ≡ ∂µλ

a − gfabcAbµλ
c
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The auxiliary field Da is again needed so that the SUSY algebra closes on-shell.

Counting fermion and boson degrees of freedom on-shell and off-shell:

Aµ λ D

on-shell (nB = nF = 2) 2 2 0

off-shell (nB = nF = 4) 3 4 1

To make a gauge-invariant supersymmetric Lagrangian involving both gauge and

chiral supermultiplets, one must turn the ordinary derivatives into covariant ones:

∂µφi → ∇µφi = ∂µφi + igAaµ(T
aφ)i

∂µψi → ∇µψi = ∂µψi + igAaµ(T
aψ)i

One must also add three new terms to the Lagrangian:

L = Lgauge + Lchiral −
√

2g(φ∗T aψ)λa −
√

2gλ†a(ψ†T aφ)

+g(φ∗T aφ)Da.

You can check (after some algebra) that this full Lagrangian is now invariant under

both SUSY transformations and gauge transformations.
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Supersymmetric gauge interactions

The following interactions are dictated by ordinary gauge invariance alone:

φ φ∗ φ φ∗ ψ ψ† λ λ†

SUSY also predicts interactions that have gauge coupling strength, but are not

gauge interactions in the usual sense:

ψi

λa

φ∗j

−i
√

2ga(Ta)i
j

λ†a

φi ψ†j

−i
√

2ga(Ta)i
j

φi φj

φ∗k φ∗ℓ

−ig2a(Tak
i Taℓ

j +Taℓ
i Tak

j )

These interactions are entirely determined by supersymmet ry and the

gauge group. Experimental measurements of the magnitudes o f these

couplings will provide an important test that we really have SUSY.
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Soft SUSY-breaking Lagrangians

It has been shown that the quadratic sensitivity to MUV is still absent in SUSY

theories with these SUSY-breaking terms added in:

Lsoft = − 1
2 (Ma λ

aλa + c.c.) − (m2)ijφ
∗jφi

−
(

1
2b
ijφiφj + 1

6a
ijkφiφjφk + c.c.

)
,

They consist of:

• gaugino massesMa,

• scalar (mass)2 terms (m2)ji and bij ,

• (scalar)3 couplings aijk
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How to build a SUSY Model:

• Choose a gauge symmetry group.

(In the MSSM, this is already done: SU(3)C × SU(2)L × U(1)Y .)

• Choose a superpotentialW ; must be invariant under the gauge symmetry.

(In the MSSM, this is almost already done: Yukawa couplings are dictated by

the observed fermion masses.)

• Choose a soft SUSY-breaking Lagrangian, or else choose a method for

spontaneous SUSY breakdown.

(This is where almost all of the arbitrariness in the MSSM is.)

Let’s do this for the MSSM now, and then explore the consequen ces.
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The Superpotential for the Minimal SUSY Standard Model:

WMSSM = ˜̄uyuQ̃Hu − ˜̄dydQ̃Hd − ˜̄eyeL̃Hd + µHuHd

The objects Hu, Hd, Q̃, L̃, ˜̄u, ˜̄d, ˜̄e appearing here are the scalar

fields appearing in the left-handed chiral supermultiplets. Recall that

ū, d̄, ē are the conjugates of the right-handed parts of the quark and

lepton fields.

The dimensionless Yukawa couplings yu, yd and ye are 3 × 3

matrices in family space. Up to a normalization, and higher-order

quantum corrections, they are the same as in the Standard Model.

We need both Hu and Hd, because terms like ˜̄uyuQ̃H∗

d
and

˜̄dydQ̃H∗

u
are not analytic, and so not allowed in the superpotential.
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In the approximation that only the t, b, τ Yukawa couplings are included:

yu ≈

0

B

B

@

0 0 0

0 0 0

0 0 yt

1

C

C

A

; yd ≈

0

B

B

@

0 0 0

0 0 0

0 0 yb

1

C

C

A

; ye ≈

0

B

B

@

0 0 0

0 0 0

0 0 yτ

1

C

C

A

the superpotential becomes

WMSSM ≈ yt(t̄tH
0
u − t̄bH+

u ) − yb(b̄tH
−
d − b̄bH0

d)

−yτ (τ̄ ντH−
d − τ̄ τH0

d ) + µ(H+
u H

−
d −H0

uH
0
d)

Here the ˜ are omitted to reduce clutter, and Q3 = (t b); L3 = (ντ τ);

Hu = (H+
u H

0
u); Hd = (H0

d H
−
d ) ū3 = t̄; d̄3 = b̄; ē3 = τ̄ .

The minus signs are arranged so that if the neutral Higgs scalars get positive

VEVs 〈H0
u〉 = vu and 〈H0

d〉 = vd, and the Yukawa couplings are defined

positive, then the fermion masses are also positive:

mt = ytvu; mb = ybvd; mτ = yτvd.
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Actually, the most general possible superpotential would also include:

W∆L=1 = 1
2λijkLiLj ēk + λ′ijkLiQj d̄k + µ′

iLiHu

W∆B=1 = 1
2λ

′′
ijkūid̄j d̄k

These violate lepton number (∆L = 1) or baryon number (∆B = 1).

If both types of couplings were present,

and of order 1, then the proton would

decay in a tiny fraction of a second

through diagrams like this: uR

uR

dR s̃∗R

p+

{

}
π+

νe

uR

d∗L

ν∗
e

λ′′∗
112 λ′

112

Many other proton decay modes, and other experimental limits on B and L

violation, give strong constraints on these terms in the superpotential.

One cannot simply require B and L conservation, since they are already known

to be violated by non-perturbative electroweak effects. Instead, in the MSSM, one

postulates a new discrete symmetry called Matter Parity , also known as R-parity .
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Matter parity is a multiplicatively conserved quantum number defined as:

PM = (−1)3(B−L)

for each particle in the theory. All quark and lepton supermultiplets carry

PM = −1, and the Higgs and gauge supermultiplets carry PM = +1. This

eliminates all of the dangerous ∆L = 1 and ∆B = 1 terms from the

superpotential, saving the proton.

R-parity is defined for each particle with spin S by:

PR = (−1)3(B−L)+2S

This is exactly equivalent to matter parity, because the product of (−1)2S is

always +1 for any interaction vertex that conserves angular momentum.

However, particle within the same supermultiplet do not carry the sameR-parity.

You can check that all of the known Standard Model particles and the Higgs

scalar bosons carry PR = +1, while all of the squarks and sleptons and

higgsinos and gauginos carry PR = −1.
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Consequences of R-parity

The particles with odd R-parity (PR = −1) are the “supersymmetric particles” or

“sparticles”.

Every interaction vertex in the theory must contain an even number of PR = −1

sparticles. Three extremely important consequences:

• The lightest sparticle with PR = −1, called the “Lightest Supersymmetric

Particle” or LSP, must be absolutely stable. If the LSP is electrically neutral, it

interacts only weakly with ordinary matter, and so can make an attractive

candidate for the non-baryonic dark matter required by cosmology.

• In collider experiments, sparticles can only be produced in even numbers

(usually two-at-a-time).

• Each sparticle other than the LSP must eventually decay into a state that

contains an odd number of LSPs (usually just one). The LSP escapes the

detector, with a missing momentum signature.
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The Lightest SUSY Particle as Cold Dark Matter

Recent results in experimental cosmology suggest the existence of cold dark

matter with a density:

ΩCDMh
2 = 0.11 ± 0.02 (WMAP 2003)

where h = Hubble constant in units of 100 km/(sec Mpc).

A stable particle which freezes out of thermal equilibrium will have Ωh2 = 0.11

today if its thermal-averaged annihilation cross-section is, roughly:

〈σv〉 = 1 pb

As a crude estimate, a weakly interacting particle that annihilates in collisions with

a characteristic mass scale M will have

〈σv〉 ∼ α2

M2
∼ 1 pb

(150 GeV

M

)2

So, a stable, weakly interacting particle with mass of order 100 GeV is a likely

candidate. In particular, a neutralino LSP (Ñ1) may do it, if R-parity is conserved.
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Is R-parity inevitable?

No. But, besides saving the proton and giving us a dark matter particle, it has the

nice feature that it could arise naturally as a surviving subgroup of a continuous

gauge symmetry. If U(1)B−L symmetry is gauged, and then broken at very high

energy by a VEV of some field that carries an even integer value of 3(B − L),

then matter parity will automatically be an exact symmetry of the MSSM.

However, there are alternatives to R-parity, for example baryon triality , a Z3

discrete symmetry:

ZB3 = e2πi(B−2Y )/3

If ZB3 is multiplicatively conserved, then the proton is absolutely stable, but the

LSP is not.

15



The Soft SUSY-breaking Lagrangian for the MSSM

LMSSM
soft = − 1

2

(
M3g̃g̃ +M2W̃ W̃ +M1B̃B̃

)
+ c.c.

−
(˜̄uau Q̃Hu − ˜̄dad Q̃Hd − ˜̄eae L̃Hd

)
+ c.c.

−Q̃† m2

Q̃
Q̃− L̃† m2

L̃
L̃− ˜̄um2

˜̄u
˜̄u† − ˜̄dm2

˜̄d

˜̄d
†
− ˜̄em2

˜̄e
˜̄e†

−m2
Hu
H∗
uHu −m2

Hd
H∗
dHd − (bHuHd + c.c.) .

The first line gives masses to the MSSM gauginos (gluino g̃, winos W̃ , bino B̃).

The second line consists of (scalar)3 interactions.

The third line is (mass)2 terms for the squarks and sleptons.

The last line is Higgs (mass)2 terms.

If SUSY is to solve the Hierarchy Problem, we expect:

M1, M2, M3, au, ad, ae ∼ msoft;

m2

Q̃
, m2

L̃
, m2

˜̄u
, m2

˜̄d
, m2

˜̄e
, m2

Hu
, m2

Hd
, b ∼ m2

soft

where msoft <∼ 1 TeV.
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The soft SUSY-breaking Lagrangian of the MSSM contains 105 new parameters

not found in the Standard Model.

Most of what we do not already know about SUSY is expressed

by the question: “How is supersymmetry broken?”

Many proposals have been made.

The question can be answered experimentally by discovering the pattern of Higgs

and squark and slepton and gaugino masses, because they are the main terms in

the SUSY-breaking Lagrangian.
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Electroweak symmetry breaking and the Higgs bosons

In SUSY, there are two complex Higgs scalar doublets, (H+
u , H

0
u) and

(H0
d , H

−
d ), rather than one in the Standard Model.

The Higgs VEVs can be parameterized:

vu = 〈H0
u〉, vd = 〈H0

d〉, where

v2
u + v2

d = v2 = 2m2
Z/(g

2 + g′2) ≈ (175 GeV)2

tanβ = vu/vd.

The quark and lepton masses are related to these VEVs and the superpotential Yukawa

couplings by:

yt =
mt

v sinβ
, yb =

mb

v cosβ
, yτ =

mτ

v cosβ
, etc.

If we want the Yukawa couplings to avoid getting non-perturbatively large up to

very high scales, we need:

1.5 <∼ tanβ <∼ 55

18



Define mass-eigenstate Higgs bosons: h0, H0, A0, G0, H+, G+ by:

„

H0
u

H0
d

«

=

„

vu

vd

«

+
1√
2

„

cosα sinα

− sinα cosα

«„

h0

H0

«

+
i√
2

„

sinβ cosβ

− cosβ sinβ

«„

G0

A0

«

„

H+
u

H−∗
d

«

=

„

sinβ cosβ

− cosβ sinβ

«„

G+

H+

«

Now, expand the potential to second order in these fields to obtain the masses:

m2
A0 = 2b/ sin 2β

m2
h0,H0 = 1

2

(
m2
A0 +m2

Z ∓
√

(m2
A0 +m2

Z)2 − 4m2
Zm

2
A0 cos2 2β

)
,

m2
H± = m2

A0 +m2
W

The Goldstone bosons have mG0 = mG± = 0; they are absorbed by the Z ,

W± bosons to give them masses, as in the Standard Model.
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Typical contour map of the Higgs potential in SUSY:

0 50 100 150 200 250 300
H

u
  [GeV]

0

20

40

60

H
d  [

G
eV

]

The Standard Model-like Higgs boson h0 corresponds to oscillations along the

shallow direction with (H0
u − vu, H

0
d − vd) ∝ (cosα,− sinα). At tree-level, it

is easy to show from above that the lightest Higgs scalar obeys:

mh0 < mZ .

This has been ruled out by LEP2. However, taking into account loop effects,mh0

is considerably larger. Assuming that all superpartners are lighter than 1000 GeV,

and that perturbation theory is valid up to MGUT, one finds:

mh0 <∼ 130 GeV

in the MSSM. By adding more supermultiplets, the bound increases to 150 GeV.

By not requiring that the theory stays perturbative, one can get up to 200 GeV.
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The decoupling limit for the Higgs bosons

If mA0 ≫ mZ , then:

• h0 has the same couplings as would a Standard Model Higgs boson of the

same mass

• α ≈ β − π/2

• A0, H0, H± form an isospin doublet, and are much heavier than h0

Mass

h0

A0, H0

H±
Isospin doublet Higgs bosons

SM-like Higgs boson

Many models of SUSY breaking approximate this decoupling li mit.
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Radiative corrections to the Higgs mass in SUSY:

m2
h0 = m2

Z cos2(2β) +
3

4π2
y2
tm

2
t ln

(mt̃1
mt̃2

m2
t

)
+ . . .

h0
+

t

t

h0
+

t̃
h0

+
t̃

t̃

t

t

h0
g̃ + . . .

At tree-level: m2
Z pure electroweak

At one-loop: y2
tm

2
t top Yukawa comes in

At two-loop: αSy
2
tm

2
t SUSYQCD comes in

At three-loop: α2
Sy

2
tm

2
t

Even the three-loop corrections can add 1 GeV or so to mh0 .

This is larger than the experimental uncertainty expected at the LHC.
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Neutralinos

The neutral higgsinos (H̃0
u, H̃0

d ) and the neutral gauginos (B̃, W̃ 0) mix with

each other after electroweak symmetry breaking to form four neutralino fermion

states. In the gauge eigenstate basis ψ0
i = (B̃, W̃ 0, H̃0

d , H̃
0
u) for

i = 1, 2, 3, 4, the neutralino mass terms in the Lagrangian are

Lneutralino mass = − 1

2
(ψ0)T

MÑψ
0

MÑ =

0

B

B

B

B

B

@

M1 0 −g′vd/
√

2 g′vu/
√

2

0 M2 gvd/
√

2 −gvu/
√

2

−g′vd/
√

2 gvd/
√

2 0 −µ
g′vu/

√
2 −gvu/

√
2 −µ 0

1

C

C

C

C

C

A

The diagonal terms are just the gaugino masses in the soft SUSY-breaking

Lagrangian. The −µ entries can be traced back to the superpotential. The

off-diagonal terms come from the gaugino-Higgs-Higgsino interactions, and are

always less than mZ .
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The physical neutralino mass eigenstates Ñi (another popular notation is χ̃0
i ) are

obtained by diagonalizing the mass matrix with a unitary matrix.

Ñi = Nijψ
0
j ,

where

diag(mÑ1
,mÑ2

,mÑ3
,mÑ4

) = N∗MN−1,

with mÑ1
< mÑ2

< mÑ3
< mÑ4

.

In many models of SUSY breaking, one finds:

M1 ≈ 0.5M2 < |µ| and mZ ≪ |µ|

where the “0.5” is really 5
3 tan2 θW . In that case, the lightest neutralino state Ñ1

is mostly bino, with mass nearly equal to M1.

The lightest neutralino fermion, Ñ1, is a likely candidate for the cold dark

matter that seems to be required by cosmology.
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Charginos

Similarly, the charged higgsinosH+
u , H

−
d and the charged winos W+,W− mix

to form chargino fermion mass eigenstates.

Lchargino mass = − 1
2 (ψ±)TM eCψ

± + c.c.

where, in 2 × 2 block form,

M eC =

(
0 XT

X 0

)
with X =

(
M2 gvu

gvd µ

)

The mass eigenstates C̃±
1,2 (many other sources use χ̃±

1,2) are related to the

gauge eigenstates by two unitary 2×2 matrices U and V according to

(
C̃+

1

C̃+
2

)
= V

(
W̃+

H̃+
u

)
;

(
C̃−

1

C̃−
2

)
= U

(
W̃−

H̃−
d

)
.

Note that the mixing matrix for the positively charged left-handed fermions is

different from that for the negatively charged left-handed fermions.
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The chargino mixing matrices are chosen so that

U∗XV−1 =

(
m eC1

0

0 m eC2

)
,

with positive real entries m eCi
. In this case, one can solve for the tree-level mass2

eigenvalues in simple closed form:

m2
eC1
,m2

eC2
=

1

2

[
|M2|2 + |µ|2 + 2m2

W

∓
√

(|M2|2 + |µ|2 + 2m2
W )2 − 4|µM2 −m2

W sin 2β|2
]
.

In many models of SUSY breaking, one finds thatM2 ≪ |µ|, so the lighter

chargino is mostly wino with mass close to M2, and the heavier is mostly

higgsino with mass close to |µ|.
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A typical mass hierarchy for the neutralinos and charginos, assumingmZ ≪ |µ|
and M1 ≈ 0.5M2 < |µ|.

Ñ1

Ñ2 C̃1

C̃2Ñ4

Ñ3

Mass

bino-like LSP

wino-like

higgsino-like

Although this is a very popular scenario, it is NOT guarantee d.
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The Gluino

The gluino is an SU(3)C color octet fermion, so it does not have the right

quantum numbers to mix with any other state. Therefore, at tree-level, its mass is

the same as the corresponding parameter in the soft SUSY-breaking Lagrangian:

Mg̃ = M3

However, the quantum corrections to this are quite large (again, because this is a

color octet!). If one calculates the one-loop pole mass of the gluino, one finds:

Mg̃ = M3(Q)
(
1 +

αs
4π

[
15 + 6 ln(Q/M3) +

∑
Aq̃

])

whereQ is the renormalization scale, the sum is over all 12 squark multiplets, and

Aq̃ =

∫ 1

0

dx x ln
[
xm2

eq/M
2
3 + (1 − x)m2

q/M
2
3 − x(1 − x) − iǫ

]
.

This correction can be of order 5% to 25%, depending on the squark masses!

It tends to increase the gluino mass, compared to the tree-level prediction.
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Squarks and Sleptons

To treat these in complete generality, we would have to take into account arbitrary

mixing. So the mass eigenstates would be obtained by diagonalizing:

• a 6 × 6 (mass)2 matrix for up-type squarks (ũL, c̃L, t̃L, ũR, c̃R, t̃R),

• a 6 × 6 (mass)2 matrix for down-type squarks (d̃L, s̃L, b̃L, d̃R, s̃R, b̃R),

• a 6 × 6 (mass)2 matrix for charged sleptons (ẽL, µ̃L, τ̃L, ẽR, µ̃R, τ̃R),

• a 3 × 3 matrix for sneutrinos (ν̃e, ν̃µ, ν̃τ )

Fortunately, in viable models, most of these mixing angles are very small.

The first- and second-family squarks and sleptons have negligible Yukawa

couplings, so they end up in 7 very nearly degenerate, unmixed pairs (ẽR, µ̃R),

(ν̃e, ν̃µ), (ẽL, µ̃L), (ũR, c̃R), (d̃R, s̃R), (ũL, c̃L), (d̃L, s̃L).

29



For the third-family squarks and sleptons, there are additional effects proportional

the large Yukawa (yt, yb, yτ ) and soft (at, ab, aτ ) couplings. For the top quark,

we have corrections with the diagrammatic representations:

t̃L t̃R

〈H0
u〉

at
and

t̃L t̃R

〈H0
d〉

µyt

The first diagram comes directly from the soft SUSY-breaking Lagrangian, and the

others from the F -term contribution to the scalar potential. So, in the (t̃L, t̃R)

basis, the top squark mass2 matrix is:

(
m2
Q̃3

+m2
t + ∆t̃L

a∗t vu − µytvd

atvu − µ∗ytvd m2
˜̄u3

+m2
t + ∆t̃R

)

Therefore, the top-squark system has a significant mixing, with the off-diagonal

entries “repelling” the two mass2 eigenvalues.
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Diagonalizing the top squark mass2 matrix, one finds mass eigenstates:

(
t̃1

t̃2

)
=

(
ct̃ −s∗

t̃

st̃ ct̃

)(
t̃L

t̃R

)

where m2
t̃1
< m2

t̃2
by convention, and |ct̃|2 + |st̃|2 = 1.

In a completely analogous way, there is a non-trivial mixing for the bottom squark

and tau slepton states:

(
b̃1

b̃2

)
=

(
cb̃ −s∗

b̃

sb̃ cb̃

)(
b̃L

b̃R

)
;

(
τ̃1

τ̃2

)
=

(
cτ̃ −s∗τ̃
sτ̃ cτ̃

)(
τ̃L

τ̃R

)

The same sort of mixing occurs for the first- and second-family squarks and

sleptons, but is considered negligible because the Yukawa couplings are small,

and in most viable models the relevant a-terms are also.
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The undiscovered particles in the MSSM:

Names Spin PR Mass Eigenstates Gauge Eigenstates

Higgs bosons 0 +1 h0 H0 A0 H± H0
u H0

d H+
u H−

d

ũL ũR d̃L d̃R “ ”

squarks 0 −1 s̃L s̃R c̃L c̃R “ ”

t̃1 t̃2 b̃1 b̃2 t̃L t̃R b̃L b̃R

ẽL ẽR ν̃e “ ”

sleptons 0 −1 µ̃L µ̃R ν̃µ “ ”

τ̃1 τ̃2 ν̃τ τ̃L τ̃R ν̃τ

neutralinos 1/2 −1 Ñ1 Ñ2 Ñ3 Ñ4 B̃0 W̃ 0 H̃0
u H̃0

d

charginos 1/2 −1 C̃±
1 C̃±

2 W̃± H̃+
u H̃−

d

gluino 1/2 −1 g̃ “ ”
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There are 105 new parameters associated with SUSY

breaking in the MSSM.

How are we supposed to make any meaningful

predictions in the face of this uncertainty?

Fortunately, we already know that the MSSM soft terms

cannot be arbitrary, because of experimental constraints

on flavor violation.
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Hints of an Organizing Principle

For example, if there is a smuon-selectron mixing

(mass)2 term L = −m2
µ̃∗

L
ẽL
µ̃∗
LẽL, and M̃ =

Max[mẽL
,mẽR

,M2], then by calculating this

one-loop diagram, one finds the decay width:

γ

e−µ−

eB,fW 0

eµ ee

µ− → e−γ

Γ(µ− → e−γ) = 5 × 10−21 MeV
(m2

µ̃∗
L
ẽL

M̃2

)2(100 GeV

M̃

)4

For comparison, the experimental limit is (from MEGA at LAMPF):

Γ(µ− → e−γ) < 3.6 × 10−27 MeV.

So the amount of smuon-selectron mixing in the soft Lagrangian is limited by:

(m2
µ̃∗

L
ẽL

M̃2

)
< 10−3

( M̃

100 GeV

)2
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Another example: K0 ↔ K0 mixing:
eg eg

d̃ s̃

s̃ d̃

d s

s d

K0 ↔ K0

This constrains the flavor-violating SUSY breaking terms:

L = −m2
d̃∗

L
s̃L
d̃∗Ls̃L −m2

d̃Rs̃∗R
d̃Rs̃

∗
R.

Comparing this diagram with the observed ∆mK0
gives:

Re[m2
d̃∗

L
s̃L
m2
d̃Rs̃∗R

]1/2

M̃2
<∼ 0.001

( M̃

500 GeV

)

where M̃ is the dominant squark or gluino mass.

The experimental values of ǫ and ǫ′/ǫ in the effective Hamiltonian for the

K0, K0 system also give strong constraints on the amount of d̃L, s̃L and

d̃R, s̃R mixing and CP violation in the soft terms.
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Similarly:

The D0, D0 system constrains ũL, c̃L and ũR, c̃R soft SUSY-breaking mixing.

The B0
d, B

0
d system constrains d̃L, b̃L and d̃R, b̃R soft SUSY-breaking mixing.

The soft-SUSY breaking masses must be either VERY heavy, or n early

flavor-blind, to avoid flavor-changing violating experimen tal limits.
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The Flavor-Preserving Minimal Supersymmetric Standard Mo del

Take an idealized limit in which in which the squark and slepton (mass)2 matrices

are flavor-blind, each proportional to the 3 × 3 identity matrix in family space:

m2

Q̃
= m2

Q̃
1; m2

˜̄u
= m2

˜̄u1; m2
˜̄d

= m2
˜̄d
1; m2

L̃
= m2

L̃
1; m2

˜̄e
= m2

˜̄e1.

Then all squark and slepton mixing angles are rendered trivial, because squarks

and sleptons with the same electroweak quantum numbers will be degenerate in

mass and can be rotated into each other at will. Also assume:

au = Au0 yu; ad = Ad0 yd; ae = Ae0 ye,

and no new CP-violating phases:

M1, M2, M3, Au0, Ad0, Ae0 = real

The Higgs mass parametersm2
Hu

and m2
Hd

are real, and µ and b can be

chosen real by convention.
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The Flavor-Preserving Minimal Supersymmetric Standard Mo del (continued)

The new parameters, besides those already found in the Standard Model, are:

• M1, M2, M3 (3 real gaugino masses)

• m2
Q̃

, m2
˜̄u

, m2
˜̄d
, m2

L̃
, m2

˜̄e
(5 squark and slepton mass2 parameters)

• Au0, Ad0, Ae0 (3 real scalar3 couplings)

• m2
Hu

, m2
Hd

, b, µ (4 real parameters)

So there are 15 real parameters in this model.

The parameters µ and b ≡ Bµ are often traded for the known Higgs VEV

v = 175 GeV, tanβ, and sign(µ).

Most viable SUSY breaking models are special cases of this.

However, these are Lagrangian parameters that run with the renormalization

scale,Q. Therefore, one must also choose an “input scale”Q0 where the

flavor-independence holds.
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What is the input scale Q0 ?

Perhaps:

• Q0 = MPlanck, or

• Q0 = Mstring, or

• Q0 = MGUT, or

• Q0 is some other scale associated with the type of SUSY breaking.

In any case, one can pick the SUSY-breaking parameters at Q0 as boundary

conditions, then run them down to the weak scale using their renormalization

group (RG) equations. Flavor violation will remain small, because the Yukawa

couplings of the first two families are small.

At the weak scale, use the renormalized parameters to predict physical masses,

decay rates, cross-sections, dark matter relic density, etc.
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A reason to be optimistic that this

program can succeed: the SUSY

unification of gauge couplings. The

measured α1, α2, α3 are run up to

high scales using the RG equations

of the Standard Model (dashed lines)

and the MSSM (solid lines). 2 4 6 8 10 12 14 16 18
Log10(Q/1 GeV)
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40
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60

α−1
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At one-loop order, the RG equations are:

d

d(lnQ)
α−1

a = − ba
2π

(a = 1, 2, 3)

with bSM
a =(41/10,−19/6,−7) in the Standard Model, and bMSSM

a =(33/5,1,−3) in the

MSSM because of the extra particles in the loops. The results for the MSSM are

in agreement with unification at MGUT ≈ 2 × 1016 GeV.

If this hint is real, we can reasonably hope that a similar ext rapolation for

the soft SUSY-breaking parameters can also work.
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Origins of SUSY breaking

Up to now, we have simply put SUSY breaking into the MSSM explicitly.

To gain deeper understanding, let us consider how SUSY could be spontaneously

broken. This means that the Lagrangian is invariant under SUSY transformations,

but the ground state is not:

Qα|0〉 6= 0, Q†
α̇|0〉 6= 0.

The SUSY algebra tells us that the Hamiltonian is related to the SUSY charges by:

H = P 0 = 1

4
(Q1Q

†
1 +Q†

1Q1 +Q2Q
†
2 +Q†

2Q2).

Therefore, if SUSY is unbroken in the ground state, then H|0〉 = 0, so the

ground state energy is 0. Conversely, if SUSY is spontaneously broken, then the

ground state must have positive energy, since

〈0|H|0〉 = 1

4

“

‖Q†
1|0〉‖2 + ‖Q1|0〉‖2 + ‖Q†

2|0〉‖2 + ‖Q2|0〉‖2
”

> 0

To achieve spontaneous SUSY breaking, we need a theory in whi ch the

prospective ground state |0〉 has positive energy.
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In SUSY, the potential energy can be written, using the equations of motion, as:

V =
∑

i

|Fi|2 + 1
2

∑

a

DaDa,

a sum of squares of auxiliary fields. So, for spontaneous SUSY breaking, one

must arrange a stable (or quasi-stable) ground state with either 〈Fi〉 6= 0 or

〈Da〉 6= 0, for at least one i or a.

Models of SUSY breaking where

• 〈Fi〉 6= 0 are called “O’Raifeartaigh models” or “F-term breaking models”

• 〈Da〉 6= 0 are called “Fayet-Iliopoulis models” or “D-term breaking models”

F -term breaking is used in (almost) all known realistic models.

This can only happen if the chiral supermultiplet is a singlet.
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Spontaneous Breaking of SUSY requires us to extend the MSSM

There is no gauge-singlet chiral supermultiplet in the MSSM that could get a

non-zero F -term VEV.

Even if there were such an 〈F 〉, there is another general obstacle. Gaugino

masses cannot arise in a renormalizable SUSY theory at tree-level. This is

because SUSY does not contain any (gaugino)-(gaugino)-(scalar) coupling that

could turn into a gaugino mass term when the scalar gets a VEV.

We also have the clue that SUSY breaking must be essentially flavor-blind in

order to not conflict with experiment.

This leads to the following general schematic picture of SUSY breaking. . .
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The MSSM soft SUSY-breaking terms arise indirectly or radia tively, not from

tree-level renormalizable couplings directly to the SUSY- breaking sector.

(Hidden sector)
(Visible sector)

Supersymmetry
breaking origin

     MSSMFlavor-blind

interactions

Spontaneous SUSY breaking occurs in a “hidden sector” of particles with no

(or tiny) direct couplings to the “visible sector” chiral supermultiplets of the MSSM.

However, the two sectors do share some mediating interactions that transmit

SUSY-breaking effects indirectly. As a bonus, if the mediating interactions are

flavor-blind, then the soft SUSY-breaking terms of the MSSM will be also.

By dimensional analysis,

msoft ∼
〈F 〉
M

where M is a mass scale associated with the physics that mediates between the

two sectors.
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Planck-scale Mediated SUSY Breaking (also known as “gravity mediation”)

The idea: SUSY breaking is transmitted from a hidden sector to the MSSM by the

new interactions, including gravity, that enter near the Planck mass scale MP .

If SUSY is broken in the hidden sector by some VEV 〈F 〉, then the MSSM soft

terms should be of order:

msoft ∼
〈F 〉
MP

This follows from dimensional analysis, since msoft must vanish in the limit that

SUSY breaking is turned off (〈F 〉 → 0) and in the limit that gravity becomes

irrelevant (MP → ∞).

Since we knowmsoft ∼ few hundred GeV, and MP ∼ 2.4 × 1018 GeV:

√
〈F 〉 ∼ 1011 or 1012 GeV
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Planck-scale Mediated SUSY Breaking (continued)

Write down an effective field theory non-renormalizable Lagrangian that couples

F to the MSSM scalar fields φi and gauginos λa:

LPMSB = −
( fa

2MP
Fλaλa + c.c.

)
− kji
M2
P

FF ∗φiφ
∗j

−
( αijk

6MP
Fφiφjφk +

βij

2MP
Fφiφj + c.c.

)

This is (part of) a fully supersymmetric Lagrangian that arises in supergravity.

When we replace F by its VEV 〈F 〉, we get exactly the MSSM soft

SUSY-breaking Lagrangian, with:

• Gaugino masses: Ma = fa〈F 〉/MP

• Scalar squared massed: (m2)ji = kji |〈F 〉|2/M2
P and bij = βij〈F 〉/MP

• Scalar3 couplings aijk = αijk〈F 〉/MP

Unfortunately, it is not obvious that these are flavor-blind!
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A dramatic simplification occurs if one assumes a “minimal” form for the kinetic

terms and gauge interactions in the underlying supergravity theory. (Whether this

assumption is reasonable or not remains controversial.)

This means fa = f for all gauge interactions, kji = kδji for all scalar fields, and

αijk = αyijk and βij = βM ij . Then all of the MSSM soft terms can be

written in terms of just four parameters:

• A common gaugino mass: m1/2 = f 〈F 〉
MP

• A common scalar squared mass: m2
0 = k |〈F 〉|2

M2
P

• A scalar3 coupling prefactor: A0 = α 〈F 〉
MP

• A scalar mass2 prefactorB0 = β 〈F 〉
MP

This simplified parameter space is often called “Minimal Supergravity” or

“mSUGRA”.

47



The “mSUGRA” parameter space

In terms of the four parametersm1/2, m2
0, A0, and B0:

M3 = M2 = M1 = m1/2

m2

Q̃
= m2

˜̄u
= m2

˜̄d
= m2

L̃
= m2

˜̄e
= m2

0 1

m2
Hu

= m2
Hd

= m2
0

au = A0yu, ad = A0yd, ae = A0ye

b = B0µ.

These values of the soft terms should probably be taken at the renormalization

scale Q0 = MP , and then run down to the weak scale. However, it is traditional

to use Q0 = MGUT instead, because nobody has any idea how to extrapolate

aboveMGUT! Part, but not all, of the error incurred in doing so can be

reabsorbed into the definitions of m1/2, m2
0, A0, andB0.
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Some particular models can be even more predictive, in principle:

• Dilaton-dominated: m2
0 = m2

3/2, m1/2 = −A0 =
√

3m3/2

• Polonyi: m2
0 = m2

3/2, A0 = (3 −
√

3)m3/2

• “No-scale” or “Gaugino mass dominated”: m1/2 ≫ m0, A0

However, there is no clear theoretical reason why things should be so simple.

The modern viewpoint is to take m1/2, m2
0, A0, and B0 as crude, but

convenient, parameterizations of our ignorance of SUSY breaking.

It is usual to tradeB0 for the parameter tanβ = vu/vd.

Also, the minimization of the EW potential allows us to eliminate the magnitude

(but not the phase) of µ in favor of mZ .
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