Calorimeters

Showers & Detectors,

Signal Treatment & Commissioning,

Calibration & Reconstruction

Thanks to W. Riegler, L. Serin, N. Hadley, all speakers of CALOR 2008 "Calorimetry for particle physics" C. Fabjan, F. Gianotti - 2003

Overview

- Showers & Detectors
 - Generalities
 - EM Calorimeters
 - Hadronic Calorimeters
- Signal Treatment & Commissioning
 - Signal Treatment
 - Online Calibration
 - Commissioning
- Calibration & Reconstruction
 - Cell level calibration
 - Electrons/photons
 - Jets
 - − Missing E_T
 - E-flow

Longitudinal shower profiles

Simulation of 1 GeV electron in copper

- Multiplication of e/γ up to max shower depth where most particles reach E_c
- Exponential fall off of the shower afterwards
- Maximum shower development ~6 X₀
- Quasi universal behavior wrt X₀ but :
- Shower maximum deeper at high Z
- Slower decay at high Z
- → Critical energy ∞ 1/Z

The depth of a calorimeter goes as In(E)

After 25 X₀ only 1% leakage for E up to 300 GeV → compact detectors!

em Showers

- Electron, photons produce em showers in a calorimeter:
 - em showers are compact:
 - the shower maximum is at $\sim 6X_0$ longitudinally contained in $\sim 25 X_0$,
 - laterally contained to 90% in 1 R_M, > 99% in 3 R_M
 - Measured in homogeneous (crystal) or sampling calorimeters
 - homogenous calorimeter have an excellent intrinsic resolution, but larger non-uniformities, no longitudinal segmentation
 - Sampling em calorimeters use either scintillator or liq. Noble Gas (liq. Argon) as active material, and mostely Pb or Ur as absorber: fine segmentation, large variety of design
 - Intrinsic resolutions of em calorimeters: 3-20%/√E

Hadron Calorimeters

- Showers & Detectors
 - Generalities
 - EM Calorimeters
 - Hadron Calorimeters
 - Hadron Showers
 - Compensation
- Signal Treatment & Commissioning
 - Signal Treatment
 - Online Calibration
 - Commissioning
- Calibration & Reconstruction
 - Cell level calibration
 - Electrons/photons
 - Jets
 - − Missing E_T
 - E-flow

Hadron showers

1. Production of energetic secondary hadrons

- Number of particles produced ~ In (E) with an "interaction length" λ≈ 35 A^{1/3}
- secondary particles produced: p, n, π^{+/-},and
 π⁰ → 2γ → electromagnetic component of the hadron shower
- Hadrons thermalize but only <10% energy loss through ionization

2. Nuclear interactions → resulting in a few MeV photons

Produced slowly ~µs → mostly invisible energy

Resolution for hadron calorimeters

red: em component

blue: hadronic component

Signal (in energy units) obtained for a 10 GeV energy deposit

- not all the incident energy is measured : $e/\pi > 1$
- very large event to event fluctuations between hadron and em component
- em component energy dependent→ non linear →resolution worse than for em showers!

$$\frac{\sigma(E)}{E} \approx \frac{50 - 100 \%}{\sqrt{E}} \oplus 3 - 5\% \text{ (E en GeV)}$$

Compensation for hadron calorimeters

 e/π ratio is a major component to the resolution!

- if $e/\pi \approx 1$ the calorimeter is « compensated »

How to achieve compensation?

- impossible to have a similar response to e and hadrons in a homogenous calorimeter
- sampling calorimeters allow to optimize absorber and active material for the hadron cascade,
- active material containing hydrogen (Scintillator) sensitive to neutrons!
- long integrations times...
- High Z absorber material: U,
 Pb, but difficult due to
 mecanical constraints
- Tuning of the thickness between absorber and active material!

Shower profiles

300 GeV pion, 95% in 8 λ_{int} (85 cm of U) 300 GeV electron , in 30 X_0 (Pb 9cm)

80 GeV pion, 95% in 1.5 λ_{int} (32 cm) 80 GeV electron (3.5cm)

typically factor
 10 on shower
 sizes, shower
 max at ~2λ

→a large energy fraction of the hadron shower is in the em sections!

peak of events starting to shower after e.m. calo.

HCal generalities

- All the hadronic sections of the hadron collider experiments are sampling calorimeters
 - Possible optimization of e/π response, yet limited resolution of hadron showers
 - Jet radius rather large: coarser granularity, fewer longitudinal segmentation
 - big devices: mechanical considerations, cost consideration
 - Energy fraction deposited decreases with depth, radius of the device increases: less performing absorber material at the outside
 - → use of robust and rather cheep absorber material
 - → active material: either liquid Argon or scintillator

Tile calorimeters

- Atlas barrel HCAL: I=5.6m r=4.2m
- iron/scintillating tiles
- 10K readout channels in 3 layers (1.4 λ , 3.9 λ , 1.8 λ , ~2 λ from em) with a η x ϕ segmentation of 0.1x0.1 except last layer 0.2x0.1 (TC)
- resolution: $\sigma/E=50\%/\sqrt{E} \oplus 3\%$

CMS: barrel HCAL: I=9m, r=6m

- brass-scintillator calorimeter
- 10k channels 5.2 λ (10 λ total) with a η x ϕ segmentation of 0.087x0.087
- HO: scintillator array in the central region outside the magnet to catch leakage energy
- •resolution: $\sigma/E=100\%/\sqrt{E} \oplus 4\%$

D0 - Calorimeter

- 4-5 hadronic layers (FH + CH)
- Uranium absorber in EM and Uranium-Nobium in FH
- Cu (CC) or Steel (EC) for coarse hadronic

From test beam measurments:

compensating e/π ~ 1 for Run I intergration time

e:
$$\sigma_E/E = 15\% / \sqrt{E} + 0.3\%$$

 π : $\sigma_E/E = 45\% / \sqrt{E} + 4\%$

Summary on showers & detectors

- Electron, photons leave em showers in a calorimeter:
 - They are compact:
 - the shower maximum is at $\sim 6X_0$ longitudinally contained in $\sim 25 X_0$,
 - laterally contained to 90% in 1 R_M , > 99% in 3 R_M
 - Measured in homogeneous (crystal) or sampling calorimeters
 - homogenous calorimeter have an excellent intrinsic resolution, but larger nonuniformities, no longitudinal segmentation
 - Sampling calorimeters use either scintillator or liq. Argon as active material, and Pb or Ur as absorber: fine segmentation, large variety of design
 - Intrinsic resolutions 3-20%/√E
- Hadrons produce showers, where the energy contributes
 - 20-30% hadronic cascade
 - 30-60% electromagnetic cascade
 - 20-30% of the initial energy is lost in slow nuclear interactions, with large fluctuations
 - Intrinsic resolution: 50%-100%/√E
 - Hadronic calorimeters complete the em-sections: shower max at ~2λ
 - Sampling calorimeters which have to be solid, robust and rather cheap

Signal Treatment & Calibration

- how to go from the collected charge or photons to ADC counts?
 - → Basics on FrontEnd and ReadOut electronics
- how to go from ADC counts to GeV deposited in a calorimeter cell?
 - → How to determine the conversion factors?
 - → How to ensure that the measurements are linear and uniform?
 - →Effects from the detectors and the electronics

Signal Treatment

- Showers & Detectors
 - Generalities
 - EM Calorimeters
 - Hadronic Calorimeters
- Signal Treatment & Calibration
 - Signal treatment
 - Basic Front-End
 - Examples of calorimeter ReadOut
 - Noise Treatments
 - Online Calibration
 - Commissioning
- Simulation & Reconstruction
 - Cell level calibration
 - Electrons/photons
 - Jets
 - Missing ET
 - E-flow

Basic Front-end

- Pre-amplifier interfacing the detector with additional gain stages if needed.
- Shaping filtering: defines a signal form, which height is proportional to the deposited energy
- Further treatment:
 - Buffering: store the signal to take a trigger decision
 - Triggering: summation of rapid signals send to the trigger system
 - Digitization: conversion of analog signal in digital signal (ADC counts)
 - DSP:may apply online correction, elaborated 0 suppression, etc.

Calorimeter electronics: example D0

HCP School 8/12/2008

Noise measurements

Measurement of the the electronics output without any signal: example D0

Electronics noise:

- Cell capacitance, Uranium, preamplifier
- varies as √t

σ/C vs. channel

Noise studies in physics events

The typical correlation for signal between mET and sE_T starts to appears for a 2.5 σ cut

How to study the effect of noise suppression?

Most sensitive quantities: missing E_T and scalar ET

0-bias events are collected during beam crossings at fixed rate without trigger requirements

→ Those events contain about 1/3 of elastic interactions

Sophisticated noise suppression

- Online noise suppression: only energies $|E|>1.5-2.5 \sigma$ are read out
- Offline T42 algorithm is applied:
 - All cells with E>4σ are kept
 - all cells with 2σ<Ε <4σ and a neighbor with E>4 σ
 - Reduction of number of cells kept: 40%

Effect of T42 noise suppression

Effect on low energy electrons:

- better reconstruction efficiency,
- better energy resolution,
- slightly higher backgrounds which need cuts to be reoptimized

Effects on jet resolution:

Improvement at low energy without degrading jet resolution at high energy!

Typical LHC front-end

- 40MHz sampling rate
- Triggered at few kHz 1MHz rate
- Constant latency buffer of a few µs (few hundred samples at 40MHz)
- On-detector:
 - Analog front-end
 - Extraction of data for trigger
 - Latency buffer
 - Readout via optical links (many)
 - Timing and trigger control
 - Controls and monitor interface
 - Difficulties: radiation, space, cooling access, magnetic fields
- Off-detector:
 - Trigger systems
 - DAQ interface
 - Global readout and trigger control
- Digitization: on-detector or offdetector

CMS: detector electronics

SRP: Selective Read Out Processor

- allows for "event topology dependent online noise suppression": from the trigger information calorimeter regions with interesting signal are determined and the only one readout
- data flow reduction: x15-20

Atlas - read out

Optimal Filtering: determination of maximum signal amplitude A_{max} and temporal position Δt

$$A_{max} = \sum_{i=1}^{n} a_i S_i \qquad \Delta t = \frac{\sum_{i=1}^{n} b_i S_i}{A_{max}}$$

Coefficients a_i and b_i are calculated from the signal shape of each cell in order to minimize noise and pileup

→ Dynamic pedestals subtraction and pile-up suppression

Online Calibration

- Showers & Detectors
 - Generalities
 - EM Calorimeters
 - Hadronic Calorimeters
- Signal Treatment & Calibration
 - Signal Treatment
 - Online Calibration
 - Electronics response
 - Monitoring
 - Commissioning
- Calibration & Reconstruction
 - Cell level calibration
 - Electrons/photons
 - Jets
 - Missing ET
 - E-flow

Online Calibrations

"Inject a know signal and measure the response"

(I suppose) from liquid Argon Calorimeter "slang":

- "Cold calibrations": inject signal at the calorimeter cell
- "Warm calibrations": inject signal at the preamplifier level
- Light Yield monitoring: injects light signal

Allows to measure:

- channel to channel variations
- variations in time
- linearity of the electronics response
- also heavily used during commissioning

D0 Electronics calibration

- Calibration system allow to inject signals covering the entire dynamic range of the calorimeter read-out electronics
- Calibrations are done separately for gain 1 and gain 8 read-out
- Operations point of view: done ~monthly and whenever a hardware component is changed

Signal shapes: calibration vs physics

Calibration signal should be close to physics signal

Calibration signal has to vary in the same way to variations in the electronics chain as physics signal

- → Difficulty of "warm" calibrations: signal reflection towards the calorimeter cell
- → effect much stronger on hadronic cells which have a large capacitance

Atlas has a similar system, but the charge is injected much closer to the electrode: less effects of reflexion

Linearity measurements

- residuals from a linear fit
- non linearity similar for all channels: cause traced to saturation effects in SCA

→ ADC to energy conversion corrected with a universal function

Commissioning with calibration

Status of the D0 calorimeter channels in March 2001:

Online calibration systems are heavily used during the commissioning phases

- Test functionalities of the whole read-out chain
- From pattern of malfunctioning channels often the failing electronics component can be determined and mostely repaired!

CMS: ECAL monitoring system

Expected γ dose-rate on crystals at LHC high luminosity:

 $0.2-0.3 \text{ Gy/h (EB)} \rightarrow 15 \text{ Gy/h (EE)}$

During LHC cycles, a continuous variation of signal is expected

To follow and correct this effect, a fiber-distributed Laser system monitors the light response of each crystal

Laser fluctuations measured by PIN diodes. Stability 0.1%.

LHCb LED monitoring

LED signals are injected into a group fo cells during "empty bunches" via optical fibers

LED intensity is controllable spanning a good part of the ADC dynamic range

Stability of LEDs is traced by PIN photodiods

4 LEDs: stability measure over 2 days

LHCb(Atlas) 137Cs Calibration

The ¹³⁷Cs source moves at constant speed 20-30cm/s

 \rightarrow dependence of current with time I(t)can be fitted with a weighted sum of (empirical) tile response functions placed at equal time intervals Δt

Similar system for Atlas

800

600

400

200

Commissioning

- Showers & Detectors
 - Generalities
 - EM Calorimeters
 - Hadronic Calorimeters
- Signal Treatment & Commissioning
 - Signal treatment
 - Online Calibration
 - Commissioning
 - Test beam
 - Cosmic muons
- Calibration & Reconstruction
 - Cell level calibration
 - Electrons/photons
 - Jets
 - Missing ET
 - E-flow

Testbeam

Shoot with beams of different particles at different energies into calorimeter modules or combined modules from different subdetectors to measure various properties: energy response, linearity, uniformity

Setup for 2006 CMS testbeam:

H4: 10 SM with different electron energies (15-250 GeV)

- detailed studies E, η behaviour
- combined test with HCAL: reconstruction and identification of electrons/pions

H2: combined ECAL/HCAL with positrons (1-100 GeV) and pions

Combined Testbeam

Atlas combined 2005 testbeam setup:

Setup contains a full slice of the barrel detector

- → Test of detector performances as close as possible to real detector with as much "final" parts as possible
- **→** Validate Simulation
- → Test reconstruction and object-id algorithms

Test Beam: energy resolution

CMS: measurements at various electron energies, reconstruction with 3x3 matrix

$$\frac{\sigma}{E} = \frac{2.8\%}{\sqrt{E(\mathrm{GeV})}} \oplus \frac{125}{E(\mathrm{MeV})} \oplus 0.3\%$$

Linearity of the response:
Differential linerarity < 0.2% (20-180GeV)
<0.5% (2-9 GeV)
Electronics linearity < 0.1%

Beam energy

uncertainty

beam energy (GeV)

Test beam: uniformity

Impact point correction based on energy deposits in the crystal cluster position : should be usable for photons!

Correct by a function of log ratios of energies in 3x3 matrix

- universal in η (and ϕ)
- energy independent

X

Test beam: calibration

Atlas em calorimeter+preshower:

$$\mathsf{E}_{\mathsf{electron}} = \mathsf{offset} + \mathsf{W}_0 \mathsf{E}_0 + \mathsf{W}_{01} \sqrt{\mathsf{E}_0 \mathsf{E}_1} + \lambda \mathsf{E}_{\mathsf{acc}} + \mathsf{W}_3 \mathsf{E}_3$$

Offset: energy lost in front of the calorimeter

W₀: energy deposited in preshower

W₀₁: correction for energy between pressampler and calorimeter

Λ: energy deposited in calorimeter

W₃: correction for energy leakage

Test beam: Atlas resolution

Study effects of dead material:

Introduce 25, 50 and 75mm of Al in front of the calorimater

linearity:

0.5% effect observed

energy resolution: degradation of 0.5%/√E per 30% X₀

Simulation: $\sigma_E/E = (9.6 \pm 0.1)\% \sqrt{E} \oplus 0.2\%$

1.6 X₀

200

E_{beam} (GeV)

150

0.03

Installation

Commissioning

Verifying each an every component if it is working properly!

Aim:

Reducing the number of bad channels
Understanding the behavior of the apparatus:

- Noise measurements
- Cosmic muons
- Timing measurements
- -Cross talk studies

Timing

The correct cell energy depends on timing

- Timing can be adjusted by "jumpers" or adding "cable"
- -- Verification on real data: Sample amplitude 3 times: before, at and after signal peak
- Performed channel by channel
- 90% of all channels see a 0.5% difference or less
- Performed every 6 months
- Overall results very stable with time

Cosmics

The first particles seen in the "real" detector!

Cosmics

2 types of cosmic muons:

- Minimum Ionizing particles
- → Tests during construction and installation
 - → Very low Signal/Noise ratio, easier to spot in hadronic calorimeters
- High energy muons E>500 MeV (~1%)
 - → Bremsstrahlung and EM shower

Difficulty: cosmics are generally not projective → different software

Muons as MIP particles

η=0 η=0.4 Ε

Energy deposit proportional to the path length in the active material

Verification of the response uniformity in the H1 hadronic calorimeter:

Verification of the response uniformity of muons selected to be "projective" in Atlas

Signals & commissioning

- Testbeams are a very important tool:
 - Validate R&D of new detectors
 - To determine response of the detector to different particle types
 - To test and calibrate modules of the final detector
- Online calibration allows to characterize the electonics:
 - Noise suppresion
 - Linearity and Uniformity
 - Powerful tool for commissioning
- Cosmic muons are often the first particles seen by the full detector!
 - Allow to debug the interplay between different subdetecors
 - Give a first "in situ" calibration