

Muons: Lecture #2

Darien Wood Northeastern University

Hadron Collider Physics Summer School Fermilab 20 August, 2008

Lecture Organization

- Lecture #1
 - Why muons?
 - Sources of muons
 - Muon detection and reconstruction
 - With examples of muon detectors
- Lecture #2
 - Alignment
 - Muon ID
 - Using muon system features and other subdetectors to
 - Further discriminate muons from backgrounds
 - Identify different sources of muons
 - Efficiency measurement
 - Triggering
 - Particular considerations for muons
 - Commissioning

Alignment of muon detector elements

- In order to measure muon tracks with high precision, exact location of wires (cells) is required:
 - temperature variations
 - movement ("sink") of heavy objects
 - Movement when magnets are energies
 - complications due to detectors sizes and lack of space (hermeticity)
- Major ways of alignment:
 - passive detectors location is determined before the run by (optical)
 survey and these data are used for data analysis: ~0.5-1mm
 - active continuing monitoring of chambers locations by system of sensors (lasers beams, etc.): <0.1mm
 - self calibration muon tracks are used to determine final location of detector elements

Example of alignment: DØ

- Wires aligned to a precision of ~1mm over ~8 m distances
- Survey information
 - Chamber survey during construction
 - Wire locations relative to fiducial marks
 - Optical survey after construction
 - Chamber location on large pieces of iron
 - Location of iron relative to central tracker
 - Electronic sensors
 - Proximity of iron pieces relative to each other, used during opening and closing to get iron back to previous position
- Checked with $W \rightarrow \mu \nu$ events

Example of alignment: CMS

- Requirements:
 - 75-200 μ m in end cap region
 - 150-350 μm in barrel
- Over distances of ~10 m
- Magnetic distortion: displacements at the level of more than a cm in some regions when solenoid is energized
 - Clearly, static survey is inadequate
- Continuous local alignment systems for barrel and end cap systems, plus a link system to relate muon and central track
- 10,000 LEDs, 150 laser beams, 900 photodectectors, 600 analog sensors

5

Example of alignment: ATLAS

- Requirements
 - 30 μm accuracy
 - Over distances of ~20 m
- MDT = "monitored drift tubes"
 - Refers to constant position monitoring
- ~5000 alignment sensors
 - 10 μm precision
 - Example: RASNIK monitors for in-plane measurement of chambers

Identifying Muons

A Generic Detector System

Tracking chambers ⇒ trajectory of charged particles

Calorimeters ⇒ measure energy

Electromagnetic: e, photon

Hadronic: pion, K, proton, neutrons...

Muon Chambers ⇒ measure muon trajectory ⇒ charged particles bend in

⇒ charged particles bend in magnetic fields. Bend depends on charge and momentum

Muon Signal

$$p_{in} \approx p_{out} + E_{loss}$$
 (muon ID tool)

Better resolution comes from tracker; p_{out} dominated by multiple scattering (or showering)

Muon background 1: punchthrough/decay

$$p_{in} >> p_{out} + E_{loss}$$

Outer decay/p.t. track points back to parent hadron, but momenta do not match.

Muon background 2: halo/backscatter

Good timing (scintillator) can get rid of most of these

Common tools to reject fake/mismeasured muons

- Number of muon hits and fit quality (chisquared)
 - Rejects combinatorics, poorly measured muons
- Impact parameter to vertex
 - Rejects most cosmic rays, beam halo
 - Careful, can also reject muon from long-lived decays
- Spatial matching with central track
 - Improves momentum determination
 - Rejects combinatorics
- Timing (time of flight)
 - Rejects most cosmics rays, some beam halo
 - Careful, can reject hypothetical massive stable charged particles

Background: Cosmic Ray Muons

- Cosmic ray muons arrival times are uncorrelated with beam crossings
 → flat background in time
 - Cut on tight timing window around t = 0 using fast counters
- Also require track point to the primary vertex

Isolated muons

- Usual way to select muons from decays of W, Z, etc. (as opposed to b/c decays)
 - Isoloation in calorimeter and/or tracker
- Keep in mind this is rejecting real muons
- Common styles of isolation
 - Upper limit on calorimeter energy in hollow cone around muon
 - Upper limit on sum of track p_T
 in a hollow cone around muon
 - Minimum separation between muon and nearest jet

Measuring muon ID efficiency with data

• Common method is "tag and probe" with events from dimuon decays of know resonances (J/ψ or Z, usually)

Tag muon: passes strict ID requirements

Probe muon: reconstructed, but not necessarily passing strict ID cuts

Require invariant mass of tag+probe to match resonance $(J/\psi, Z)$ mass

$$\varepsilon = \frac{\text{\#probes passing ID}}{\text{total \#probes}}$$

- Cannot be used to measure reconstruction efficiency, because method requires both muons to be reconstructed
 - With good enough momentum quality to ensure that the muons come from the selected resonance
- To remove trigger bias, typically require a single muon trigger satisfied by tag muon

Isolated muons – questions and caveats

- Should isolation energy threshold be fixed, or proportional to the muon energy?
 - Both are used
- When using jet isolation, what if the jet is not reconstructed, or falls below threshold?
 - Difficult to use for low momentum muons
 - Creates dependence on jet reconstruction algorithm
- Isolation efficiency will tend to decrease with increasing instantaneous luminosity unless there are specific precations
 - Luminosity dependent thresholds? Ugly, but can work
- Efficiency can depend strongly on event type
 - Can't necessarily expect the same efficiency for W→μν and for ttbar→ μν jjjj
 - Great caution is required when including isolation in a trigger

Measuring muon reconstruction efficiency with data

Again, "tag and probe":

Tag muon: passes strict ID requirements

Probe track: not necessarily matched with a muon

Require invariant mass of tag+probe to match resonance $(J/\psi, Z)$ mass

$$\varepsilon = \frac{\text{\#probes passing ID}}{\text{total \#probes}}$$

• Typically need to require probe track to be isolated – otherwise, large combinatoric background

Tag and probe efficiencies: caveats

- Sample used to measure efficiency with tag and probe must be similar to your intended signal sample
 - Same run range, to account for any time variations
 - Same luminosity profile, in case any ID requirements depend on luminosity
- Tag and probe assumes uncorrelated efficiencies for the tag and probe muons, and this is often not quite the case
 - Example #1: If ID requirements include isolation, events with lots of extra jets will be suppressed by the tag requirements, thus leading to an overestimate of the probe efficiency
 - Usually need to correct for this, with Monte Carlo studies or event topology studies
 - Example #2: Inefficiencies which effect the whole muon system,
 e.g. readout failure, would not show up as inefficiencies with this method

Determining background from data

- Typical example: Studying a signal where you expect muons to be isolated (e.g. $W\rightarrow \mu\nu$) and you want to estimate your background from b/c decays
 - N = number of events selected before the isolation cut
 - $-N_{iso}$ = number of events selected after isolation cut
 - ϵ_S and ϵ_b are the efficiencies to pass the isolation cut for signal and background muons, repsectively
 - S and B are the number of signal and background events in your sample before the isolation requirement

$$N = S + B$$

$$N_{iso} = \varepsilon_s S + \varepsilon_b B$$

$$\Rightarrow B = \frac{\varepsilon_s N - N_{iso}}{\varepsilon_s - \varepsilon_b}$$

This works if you can determine ε_S and ε_b from appropriate test samples, e.g.

• $Z \rightarrow \mu\mu$ for ε_S and a low missing ET event sample for ε_b

Efficiencies from data vs. MC

- Advantages to data-based efficiency determinations
 - Includes effects that are not included in MC or are difficult to model
 - Real channel-to-channel behavior
 - Underlying events and multiple interactions
 - Cosmic rays and beam halo
 - Naturally provides systematic uncertainties on the efficiencies
- Advantages to MC-based efficiency determinations
 - Incorporates possible physics/kinematic/topological dependencies
 - No need to worry about background contamination of signal sample
- Common to use hybrid approach: effic from MC with corrections and uncertainties from data

Very High Energy Muons

- Above energies of about 0.35 TeV, muons start to create γ 's and e+e- pairs which create electromagnetic showers in material
 - Can destroy usual signal of isolated muon
 - Can fake the signature of an electron or a photon
- Options
 - Use calorimeter information to reject such muons, and give up trying to measure them
 - Won't work if energy loss occurs in passive material (e.g. muon iron)
 - Restrict momentum information to that from inner detector (before shower)
 - Still potential problems with failing isolation criteria
- Never a large issue at the Tevatron (except with cosmic rays): interesting challenge for the LHC experiments

Muon tracks in the calorimeter

- Another possible ID tool is the MIP trace of the muon in the calorimeter
- Requires
 - Low threshold on calorimeter cells to measure single MIP deposit
 - Low noise, not too many underlying events
- Easier to see in the back of the calorimeter, where most soft hadrons to not penetrate

A DØ t-tbar to μ+jets Candidate Event

22

A few words on commissioning muon systems

- Cosmic rays are a blessing here a constant source of muons for chamber/counter testing
 - But very low rate once detector is deep underground
- Beam halo can also be a blessing horizontal muons from upstream
- Challenges
 - Getting the relative timing of different chambers aligned properly
 - Easier with beam, but usually one can't wait that long
 - Getting a consistent understanding of geometry for the hardware and the reconstruction
 - Event display can be very useful here
 - Anticipating time structure of real data
 - sometimes get bursts of data that hare hard to understand
 - Integrating with other systems and global DAQ
 - Always takes longer than anticipated

A few remarks on triggering

- An inclusive single muon trigger is a real workhorse
 - Essential for $W \rightarrow \mu \nu$
 - Needed for Z→μμ if you want to use tag-and-probe to measure efficiencies
 - Dimuon trigger would bias the probe muon
 - Challenge is the real rate of inclusive muons, dominated by heavy flavor