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Why Extra Dimensions (XD)?

• The idea that there are more than 3+1 dimensions has a long history...

...which I will not try to review... Sorry!

• Recent years have seen an outburst of activity in this field. 

In a sense, the driving force has been experimental, namely the real possibility to test 
these ideas at colliders (or even through cosmological observations, DM searches, etc.)

• XD should be considered a framework (even a set of frameworks), which can be
   realized through many, many models...

Much as Quantum Field Theory relates to the Standard Model (SM)

Hopefully, experimental data will tell us if/which XD are realized in nature



Why Extra Dimensions (XD)?

• The idea that there are more than 3+1 dimensions has a long history...

...which I will not try to review... Sorry!

• Recent years have seen an outburst of activity in this field. 

In a sense, the driving force has been experimental, namely the real possibility to test 
these ideas at colliders (or even through cosmological observations, DM searches, etc.)

• XD should be considered a framework (even a set of frameworks), which can be
   realized through many, many models...

Much as Quantum Field Theory relates to the Standard Model (SM)

Hopefully, experimental data will tell us if/which XD are realized in nature

• To proceed, I will simply assume that there is interest in learning about these ideas.

Certainly, establishing experimentally the existence of XD would be revolutionary!

• I will not try to answer the question of this slide now, but rather as we go along...



Can we live in more than 4D?

• We perceive (either through our senses or experimentally) 3+1 dimensions

• Whether or not there could be more dimensions depends on how we can probe them

R < 160 µm
• Gravitationally: deviations from Newton’s 
   inverse square law tell us

If these dimensions are cousins of the ones 
we see (geometric description via GR), we
expect that gravity would always see them! 

• If they can be probed by SM particles, 
   constraints much tighter: we have probed 
   distances of order 10−18 m [∼ (100 GeV)−1]

The SM is a 4D theory, and it works!

We would not have seen XD much smaller than this. Can they by lurking around?



• Illustrate with the physics of a couple of examples (probably a biased exposition)

• Start by discussing basics, highlighting properties of general applicability

My approach in these Lectures

• Can’t be exhaustive... will have to leave many interesting topics out

Concentrate on XD at the TEV scale

(i.e. those that can in principle be probed in an environment like the LHC)

• Cover some phenomenological consequences (collider, radion, dark matter...)



Plan

• General theoretical remarks

• The Kaluza-Klein decomposition

• Localization in the extra dimensions

• Extra Dimensions at the TeV scale: two categories (examples)

• Flat Extra Dimensions

• Warped Extra Dimensions

• Dark matter

• The Radion

• Boundary conditions

• Collider Phenomenology

• Dynamical breaking of the Electroweak (EW) symmetry

PART I

PART II



The Kaluza-Klein Decomposition
(or how compact dimensions are different)

• Two equivalent descriptions are possible, and have different domains of usefulness:

1) At scales large or comparable to R

A 4D language is appropriate The concept of Kaluza-Klein (KK) modes−→
2) At scales small compared to R

−→Higher-D language better
• Emphasis on higher-D spacetime structure
• Take into account effects of all KK modes at once
• E.g. useful to understand structure of divergences

• In most applications, we (would) be interested in the KK mode language

• Compact dimensions involve a scale: size/volume of the extra dimension(s) → “R”

• Easy to obtain low-energy description (it better describe physics as well as the SM does)

• Relevant description of new physics at colliders



The Kaluza-Klein Decomposition
(or how compact dimensions are different)

Quantum fields in 4+n dimensions:

Φ(xµ, yi)

Go to ``Fourier” space, except momentum not necessarily a good quantum number in the XD

``n-th KK mode”
Life is easier if the basis is orthonormal:

(µ = 0, 1, 2, 3; yi parametrize compact space)

Φ(xµ, yi) =
1√
V

∑

n

φ(n)(xµ)fn(yi)

〈fn|fm〉 = δnm

normally defined in
terms of an integral

−→ Allows to think of the φ(n)

as “independent” d.o.f.

The point is: we can expand any function in any complete set of functions {fn(yi)}



The Kaluza-Klein Decomposition
(or how compact dimensions are different)

In general: ``perturbation theory philosophy”

• Understand free part of the theory, add interactions later...

linear PDE (this we can solve)

• Free (quadratic) part defines a differential operator, e.g.

• Use the eigenfunctions of the XD part of the free differential operator
{

impose appropriate boundary conditions
(should regard as part of the definition of the theory)

Mathematical upshot: define a ``self-adjoint” problem orthonormality, completeness→

How do we choose a convenient basis? Depends on the model in question→

(
∂i∂

i + M2
)
fn = m2

nfn

∫
d4xdny

1
2

(
∂NΦ∂NΦ−M2Φ2

)
= −

∫
d4xdny

1
2
Φ

(
! + M2

)
Φ



The Kaluza-Klein Decomposition
(or how compact dimensions are different)

−
∫
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2
Φ
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∂µ∂µ + ∂i∂

i + M2
)
Φ
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1√
V
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n

φ(n)(xµ)fn(yi)



The Kaluza-Klein Decomposition
(or how compact dimensions are different)
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Physical upshot: the theory can be rewritten as −
∑

n

∫
d4x

1
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φ(n)
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∂µ∂µ + m2

n

)
φ(n)

or... a free High-D scalar is equivalent to infinite 4D scalars with masses m2
n !

−
∫
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)
Φ
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Boundary Conditions

It has been remarked that specifying the theory (physics) requires a choice of b.c.’s

We implicitly used this before: integrate by parts and discard surface terms (how convenient!)

(in 4D, the analogous assumption is that fields vanish sufficiently fast at ``infinity”)

The issue can be turned around to ask:   given an XD dimensional space,

What are the b.c.’s that preserve the previous nice properties?

• freely integrate by parts (convenient)

• self-adjointness (completeness, orthonormality, transparent physical interpretation)

The question can be answered systematically by considering arbitrary variations of the action

Under δΦ δS = δSvolume + δSsurface−→

Eqs. of motion



boundary cond.





R

0-1

Boundary Conditions (Examples)

Illustrate with a couple of relevant examples in one and two extra dimensions:

New quantum number
is simply p5

Universal Extra Dimensions

Properties:

All SM particle propagate in n (flat) dimensions

Posses a Kaluza-Klein parity

Lightest KK particle (LKP) stable → dark matter

Tree-level pair production → 1/R ∼> 400 GeV

The KK Parity has a geometrical origin

S1/Z2

y = 0 y = πR

KK parity
F.P.F.P.

+
T 2/Z4

x4

x5

M2
j = j2

R2 , PKK = (−1)j M2
j,k = j2+k2

R2 , PKK = (−1)j+k

Phenomenology of Extra Dimensions: Selected Examples – p. 17/23

Compactification on a circle

Periodic b.c.’s:

S1

Φ(y + 2πR) = Φ(y)

Compactification on the ``Interval”

End points sometimes called 
``Fixed  points” or ``branes”

B.c.’s at y = 0 and y = πR are

or linear combinations
Dirichlet, Neumann . . .

KK masses mn =
n

R

If 5D field is massless:

(XD extends from y = 0 to y = πR)



Boundary Conditions (Examples)

Torus compactification (periodic b.c.’s):

The ``Chiral Square”:

Φ(y, πR) = einπ/2Φ(πR, y)

Φ(y, 0) = einπ/2Φ(0, y) ∂5Φ(x4,x5)=(y,0) = −einπ/2 ∂4Φ(x4,x5)=(0,y)

∂5Φ(x4,x5)=(y,πR) = −einπ/2 ∂4Φ(x4,x5)=(πR,y)

Φ(x4 + 2πR, x5) = Φ(x4, x5)

Φ(x4, x5 + 2πR) = Φ(x4, x5)



Zero-Modes

The KK decomposition can lead to 0-modes, i.e. solutions with m0 = 0

• For 5D gauge fields (flat space), one finds:

f ′′
n (y) + 2f ′

n(y) = −m2
nfn(y)

m2
0 = 0

f0(y) = 1

{
which is solved by

• For 5D fermion fields (flat space), one finds:
Flat wavefunction 4D gauge invariance→

These solutions may or may not be allowed by the b.c.’s

• 4D gauge symmetry can be (spontaneously) broken by b.c.’s

• Circle and Torus: allow both chiralities

• ``Interval” and ``Chiral Square”: allow only one chirality

which are solved by
f ′

n,L −Mfn,L = mnfn,R

−f ′
n,R −Mfn,R = m∗

nfn,L

{ {
m0 = 0

fL,R
0 (y) =

√
1− e−2ML

2ML
e±My

y0 L ! Π R

0.5

1.0

1.5

2.0

2.5



Interactions in KK Language

Having understood how to interpret a higher-D theory in 4D terms, we can consider interactions

• As long as these are perturbative, the physics can be understood in terms of KK modes

X
−

X
−

ψ
−

t, b

t̄, b̄

X
−

g

ψ
−

t, b

ψ
−

g
ψ
−

ψ
−

q

q̄

g
ψ
−

ψ
−

g

g

n3

n1

n2

0-0

• In the free theory only the spectrum is observable. With interactions, the wavefunctions also
   become observable, since they determine the details of the interactions among KK modes, e.g.

Sometimes this integral obeys interesting selection rules, e.g. in 5D flat space on ``interval”:

n1 ± n2 ± n3 = 0 Hence, at tree-level, no KK mode can decay into 0-modes
(a similar selection rule holds on the chiral square and cousins)

∫
d4x dny λnΨ̄ΨΦ→

∑

n1,n2,n3

λn1,n2,n3

∫
d4x ψ̄(n1)ψ(n2)φ(n3)

λn1,n2,n3 =
λn

V
√

V

∫
dny fn1fn2fn3



KK parity (and new stable particles)

Compactification on flat spaces have a natural remnant of XD momentum conservationUniversal Extra Dimensions

Properties:

All SM particle propagate in n (flat) dimensions

Posses a Kaluza-Klein parity

Lightest KK particle (LKP) stable → dark matter

Tree-level pair production → 1/R ∼> 400 GeV

The KK Parity has a geometrical origin

S1/Z2

y = 0 y = πR

KK parity
F.P.F.P.

+
T 2/Z4

x4

x5

M2
j = j2

R2 , PKK = (−1)j M2
j,k = j2+k2

R2 , PKK = (−1)j+k

Phenomenology of Extra Dimensions: Selected Examples – p. 17/23

At tree-level: all first-level KK modes are stable!
KK number n associated with 
the magnitude of XD momenta 
(conserved up to a sign)

+
T 2/Z4

x4

x5

0-2

But loops induce new interactions:

X
−

X
−

ψ
−

t, b

t̄, b̄

X
−

g

ψ
−

t, b

ψ
−

g
ψ
−

ψ
−

q

q̄

g
ψ
−

ψ
−

g

g

n3

n1

n2

1

0

0

2

1

1

1

0

0

0-0

X
−

X
−

ψ
−

t, b

t̄, b̄

X
−

g

ψ
−

t, b

ψ
−

g
ψ
−

ψ
−

q

q̄

g
ψ
−

ψ
−

g

g

n3

n1

n2

1

0

0

2

1

1

1

0

0

0-0

(1, 0)

(1, 0)

(0, 0)

Allowed

(1, 0)

(2, 1)

(2, 0), (1, 1)

(3, 1), (2, 2)

Allowed

(0, 0)

(0, 0)

(1, 1)

Not allowed
(allowed at loop level)

(0, 0)

(0, 0)

(1, 0)

Not allowed

(j, k)

(j, k)

(0, 0)

(1, 1)

(1, 1)

(2, 0)

(0, 0)

(0, 0)

(j, k)

– p. 3/3

Can be interpreted as 
interactions localized
at the fixed points

However, one can still have a discrete symmetry that makes the lightest 1st mode stable

φ(n) → (−1)nφ(n) φ(n4,n5) → (−1)n4+n5φ(n4,n5)



ds2 = a2(y)ηµνdxµdxν − dy2

KK Decompositions in Warped Spaces

For 5D theories preserving 4D Lorentz invariance:

For scalars:

For fermions:

Φ(xµ, y) =
a(y)−1

√
L

∑

n

φ(n)(xµ)fn(y)
f ′′n + 2

a′

a
f ′n −

[
a′′

a
+ 2

a′2

a2
+ M2

]
fn = −m2

na−2fn

Eq. of motion:

Solution for a(y) = e−ky and bulk mass M2 =
[
c2
s + cs −

15
4

]
k2 :





fn(y) = Nneky

[
J|cs+1/2|(mneky/k) + bn Y|cs+1/2|(mneky/k)

]

ΨL,R(xµ, y) =
a(y)−3/2

√
L

∑

n

ψ(n)
L,R(xµ)fL,R

n (y)

Eqs. of motion:

f ′n,L − (cf − 1/2)
a′

a
fn,L = mna−1fn,R

−f ′n,R − (cf − 1/2)
a′

a
fn,R = m∗

na−1fn,L

fn(y) = Nneky
[
J|cf+1/2|(mneky/k) + bnY|cf+1/2|(mneky/k)

]





Solution for a(y) = e−ky and bulk mass M = cfk :



Aµ(xµ, y) =
1√
L

∑

n

A(n)
µ (xµ)fn(y)

f ′′n (y) + 2
a′

a
f ′n(y) = −m2

na−2fn(y)

Eq. of motion:

Solution for a(y) = e−ky :





fn(y) = Nneky

[
J1(mneky/k) + bn Y1(mneky/k)

]

All wavefunctions normalized according to:

These wavefunctions reflect the strength 

of the interactions at each point y

KK Decompositions in Warped Spaces

Boundary conditions fix the constants bn and the spectrum mn.

For gauge fields with a gauge fixing term :
1
2ξ

{
ηµν∂µAν − ξ ∂y

[
a(y)2A5

]}2

1
L

∫
dny fnfn′ = δn,n′



Using the Extra Real Estate

The low-energy physics (that of the ``0-modes”) can be very sensitive to the XD

R

q l

0-1y0 L ! Π R

0.5

1.0

1.5

2.0

2.5

We already observed that:

• 5D fermion masses control localization

• Couplings are proportional to overlap
   integrals

Hence it is easy to explain exponentially
small (dimensionless) numbers from the
underlying (unseen) XD

Yukawa couplings:

yt ∼ 1 ye ∼ 10−5 (yν ∼ 10−12 ?)

In such scenarios one can argue that the emergence of exponential herarchies is
the norm, thus making the observations of the SM far less ``puzzling”



Using the Extra Real Estate

• Scalars can also be localized in a manner similar to fermions.

Unfortunately, the existence of a (localized) scalar 0-mode, depends on the relation
between the bulk mass and two ``brane-localized” masses

In general: tuning required to obtain a light mode (compared to the KK scale)

(The fact that the possibility exists, is tied to the SUSY limit of the XD framework)

• Nevertheless, there are other ways of getting naturally localized 4D scalars...



1) Consider the 5th polarization of a 5D gauge field

(4D gauge symmetry broken by b.c.’s)

If Aµ obeys (−,−) b.c.’s (Dirichlet at both y = 0, L)

∂2
y

(
a2f0

)
= 0 f0(y) = N0 a−2(y) a = e−ky

−→
√

2kL

e2kL − 1
e2ky

(additive constant forbidden by b.c.’s)

Then A5 obeys (+,+) b.c.’s (Neumann at both y = 0, L)

Using the Extra Real Estate

(near the ``IR brane”, or
where warp factor smallest)Localization at y = L

In a warped background, the EOM for A5 is:

• Notice there are no adjustable parameters, localization happens dynamically!

• 4D scalar from can be light and have non-trivial couplings to other light fieldsA5



Using the Extra Real Estate

2) Strongly interacting fermions can form scalar bound states

X
−

X
−

ψ
−

t, b

t̄, b̄

X
−

g

ψ
−

t, b

ψ
−

g
ψ
−

ψ
−

q

q̄

g
ψ
−

ψ
−

g

g

n3

n1

n2

1

0

0

2

1

1

1

0

0

0-0
coupling increases when
fermion closer to IR brane

Upshot:

• Fermion localization triggers formation
   of bound state (also a condensate)

• Resulting scalar bound state is effectively
   localized on IR brane (because fermion 
   constituents are!)

• Scalar mass set dynamically well below KK scale

• Attractive channels from KK gluon exchange

KK gluons localized near y = L•

g(1)q(1)q̄(0) coupling

kL = 30

g(110)/g4

0 0.2 0.4 0.6 0.8 1

c

0

1

2

3

0 k L

k y

!8

!4

0

4

8

KK wavefunctions

kL = 30

f (n)(y)

1st mode

2nd mode

3rd mode

A fermion 0-mode

0-4



Models: Examples

Universal Extra Dimensions

Warped Extra Dimensions (Randall-Sundrum)



Universal Extra Dimensions (UED)

Assumption: maybe the SM lives in 4+n flat dimensions

−→ All SM particles have KK excitations that can be studied at colliders

Models in 5D and 6D have been studied...

KK decompositions rather simple, tree-level spectra given by 






n
R 5D
√

j2+k2

R 6D

2

preserve the 5th dimensional momentum (KK number).
The corresponding coupling constants among KK modes
are simply equal to the SM couplings (up to normaliza-
tion factors such as

√
2). The Feynman rules for the KK

modes can easily be derived (e.g., see Ref. [8, 9]).
In contrast, the coefficients of the boundary terms are

not fixed by Standard Model couplings and correspond
to new free parameters. In fact, they are renormalized
by the bulk interactions and hence are scale dependent
[10, 11]. One might worry that this implies that all pre-
dictive power is lost. However, since the wave functions
of Standard Model fields and KK modes are spread out
over the extra dimension and the new couplings only
exist on the boundaries, their effects are volume sup-
pressed. We can get an estimate for the size of these
volume suppressed corrections with naive dimensional
analysis by assuming strong coupling at the cut-off. The
result is that the mass shifts to KK modes from bound-
ary terms are numerically equal to corrections from loops
δm2

n/m2
n ∼ g2/16π2.

We will assume that the boundary terms are symmetric
under the exchange of the two orbifold fixed points, which
preserves the KK parity discussed below. Most relevant
to the phenomenology are localized kinetic terms for the
SM fields, such as

δ(x5) + δ(x5 − πR)

Λ

[

G4(Fµν)2 + F4Ψi/DΨ + F5Ψγ5∂5Ψ
]

,

(2)

where the dimensionless coefficients G4 and Fi are arbi-
trary and not universal for the different Standard Model
fields. These terms are important phenomenologically for
several reasons: (i) they split the near-degeneracy of KK
modes at each level, (ii) they break KK number conserva-
tion down to a KK parity under which modes with odd
KK numbers are charged, (iii) they introduce possible
new flavor violation.

Since collider signatures depend strongly on the values
of the boundary couplings it is necessary to be definite
and specify them. A reasonable ansatz is to take flavor-
universal boundary terms. Non-universalities would give
rise to FCNCs as in supersymmetry with flavor violating
scalar masses. This still leaves a large number of free pa-
rameters. For definiteness, and also because we find the
resulting phenomenology especially interesting, we make
the assumption that all boundary terms are negligible at
some scale Λ > R−1. This defines our model.

Note that this is completely analogous to the case of
the Minimal Supersymmetric Standard Model (MSSM)
where one has to choose a set of soft supersymmetry
breaking couplings at some high scale, before studying
the phenomenology. Different ansaetze for the parame-
ters can be justified by different theoretical prejudices but
ultimately one should use experimental data to constrain
them. In a sense, our choice of boundary couplings may
be viewed as analogous to the simplest minimal super-
gravity boundary condition – universal scalar and gaug-
ino masses. Thus the model of MUEDs is extremely pre-

FIG. 1: One-loop corrected mass spectrum of the first KK
level in MUEDs for R

−1 = 500 GeV, ΛR = 20 and mh = 120
GeV.

FIG. 2: Radiative corrections (in %) to the spectrum of the
first KK level for R

−1 = 500 GeV, versus ΛR.

dictive and has only three free parameters:

{R, Λ, mh} , (3)

where mh is the mass of the Standard Model Higgs boson.
The low energy KK spectrum of MUEDs depends on

the boundary terms at low scales which are determined
from the high energy parameters through the renormal-
ization group. Since the corrections are small we use the
one-loop leading log approximations. In addition to the
boundary terms we also take into account the non-local
radiative corrections to KK masses. All these were com-
puted at one-loop in [10].

A typical spectrum for the first level KK modes is
shown in Fig. 1. Fig. 2 shows the dependence of the split-
tings between first level KK modes on the cutoff scale Λ.
Typically, the corrections for KK modes with strong in-
teractions are > 10% while those for states with only

5D UED: first level

(from Cheng, Matchev & Schmaltz)
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– p. 5/12

6D UED: (1,1) level states

(from Pontón & Wang)

Loop effects play a central role:



Some Interesting Features

• KK states can be relatively light (few hundres GeV)

• KK parity: natural dark matter candidates (more later)

• In 6D:

• An understanding for number of generations based on anomaly cancellation

• Higher-dimensional spacetime symmetries lead to discrete symmetries that:

Can explain matter stability (even if baryon number violated near the weak scale)

Predict three right-handed neutrinos

• Phenomenology of first KK level similar to SUSY (missing energy signals)

• Phenomenology of second KK level can lead to well-defined resonances

Predict that neutrinos should be Dirac particles



y = 0

y = L

k is the spacetime curvature

UV brane
IR brane

0-5

The Randall-Sundrum Scenario
The magic of curvature (warping)

Assumptions:

• 5D spacetime, with 5D cosmological constant

• Compactification on the ``Interval”

{
• Soln. to Einstein’s Eqns.

• Slicing with 4D Lorentz
   invariant sections

Spacetime described by the line element

ds2 = e−2kyηµνdxµdxν − dy2 y ∈ [0, L]

Fields can either propagate in
the bulk, or be stuck to one 
of the ``branes”



The Randall-Sundrum Scenario
The magic of curvature (warping)

S ⊃
∫

d4xdy
√
−G

{
δ(y − L)

[
1
2
Gµν∂µφIR∂νφIR − λIR

(
φ2

IR − v2
IR

)2
]}

The point is that scales at different points in the XD are measured differently

To illustrate, consider a field φIR localized on the IR brane:
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φ̃IR = e−kLφIR

The point is that scales at different points in the XD are measured differently

To illustrate, consider a field φIR localized on the IR brane:

If instead the field was localized on the UV brane, φUV : all warp factors are unity

(Hierarchically different vev’s)V = λUV

(
φ̃2

UV − v2
UV

)2
+ λIR

(
φ̃2

IR − v2
IRe−2kL

)2



The Randall-Sundrum Scenario
The magic of curvature (warping)

Rule of thumb: all mass parameters on IR brane are warped down by e−kL

−→
Mass dimension in natural units

−→ [ψ] = 3/2Lkinetic
4 = ψ̄!∂ψ

Lkinetic
5 = Ψ̄!∂Ψ [Ψ] = 2

Consider a 4-fermion operator (relevant for e.g. flavor):

L5 =
α

Λ3
(Ψ̄1Ψ2)(Ψ̄3Ψ4) L4 =

α′

Λ̃2(ΛL)
(ψ̄1ψ2)(ψ̄3ψ4)

volume suppression
for bulk fields

``warped down”
scale Λ̃ = e−kLΛ
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The Randall-Sundrum Scenario
The magic of curvature (warping)

Rule of thumb: all mass parameters on IR brane are warped down by e−kL

−→
Mass dimension in natural units

−→ [ψ] = 3/2Lkinetic
4 = ψ̄!∂ψ

Lkinetic
5 = Ψ̄!∂Ψ [Ψ] = 2

Consider a 4-fermion operator (relevant for e.g. flavor):

L5 =
α

Λ3
(Ψ̄1Ψ2)(Ψ̄3Ψ4) L4 =

α′

Λ̃2(ΛL)
(ψ̄1ψ2)(ψ̄3ψ4)

From mass dimension
of 4D operator

α′ =
α

L

∫ L

0
dy e−2k(L−y)f∗1 f2f

∗
3 f4

Each KK mode →
√

2kL

0-mode near IR →
√

(1− 2c)kL

0-mode near UV → exp. suppression
0-mode flat → 1





Eff. volume for integral → 1/kL



The Randall-Sundrum Scenario

The warp factor can naturally accommodate the EW and Planck (say) scales, provided
the Higgs (or the source of EWSB) is localized near the IR brane

Model building:

• Original RS scenario had all SM fields on the brane

Only gravitons propagate in the bulk and have KK modes

• But only Higgs needs to be on IR brane. Bulk fields buy you interesting physics:

• Understand exponential fermion mass hierarchies

• Suppress dangerous FCNC’s from higher-dimension operators

α′

Λ̃2(ΛL)
(ψ̄1ψ2)(ψ̄3ψ4)

with α′ exp. suppr.

{

• Other calculable FCNC’s also suppressed

−→ Essentially a theory of flavor with physics at the TeV scale!

• Accommodates gauge coupling unification, and more...

8.3 Warped extra dimensions

width is not too narrow, and determine their spin-2 nature via the angular distribu-
tions of the final-state lepton pairs [47] if enough statistics are available. An accurate
determination of the branching fractions for the graviton KK decays to various final
states will probe the universal T µν structure of the couplings and verify the produc-
tion of gravity. Numerical studies of such coupling determinations have yet to be
performed, but are likely to demonstrate the benefits of the LC even if the graviton
KK states are kinematically inaccessible at the LC and are produced indirectly; this is
in analogy to the Z ′ studies discussed in the previous chapter.

Figure 8.16: The cross section for e+e− → µ+µ− including the exchange of a KK tower of

gravitons in the RS model with m1 = 500 GeV. The various curves correspond to k/MP l in

the range 0.01 − 0.1. From [46].

If the KK gravitons are too massive to be produced directly, their contributions to
fermion pair production may still be felt via virtual exchange. In this case, the uncer-
tainties associated with a cut-off (as present in the large extra dimensions scenario)
are avoided, since there is only one additional dimension and thus the KK states may
be neatly summed. The resulting sensitivity to the scale Λπ at the LHC and LC is dis-
played in Table 8.5. We see that the reach of the 500 GeV LC is complementary to that
of the LHC and that a 1 TeV LC extends the discovery reach of the LHC. This degree
of sensitivity to virtual graviton KK exchange at the LC implies that the KK coupling
measurements discussed above should be viable.

8.3.2 Extensions of the RS model

• Extended Manifolds

From a theoretical perspective, the RS model may be viewed as an effective theory
whose low energy features originate from a full theory of quantum gravity, such as

459

e
+
e
−

→ µ
+
µ
−

(from Davoudiasl, Hewett & Rizzo)



End of Part I


