Washington Post I/25/2009

Mixing Parameters II

Stephen Parke, Fermilab
Fermilab Nu Summer School 2009

$\sin ^{2} \theta_{13}$ from LBL:

and related processes:

Department of Conservation
Te Papa Atawhai

In Matter:

$$
P_{\mu \rightarrow e} \approx\left|\sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{s o l}}\right|^{2}
$$

where $\sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31 \mp a L)}\right.}{\left(\Delta_{31} \mp a L\right)} \Delta_{31}$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

For $L=1200 \mathrm{~km}$ and $\sin ^{2} 2 \theta_{13}=0.04$

$$
a=G_{F} N_{e} / \sqrt{2}=(4000 \mathrm{~km})^{-1}
$$

Anti-Nu: Normal Inverted dashes $\delta=\pi / \mathbf{2}$ solid $\delta=3 \pi / 2$

Off-Axis Beams BNL 1994

$\mathrm{L}=700-1000 \mathrm{~km}$ and
Energy near 2 GeV

$$
\begin{aligned}
E_{\text {vom }} & =1.8 \mathrm{GeV}\left\{\frac{\delta m_{32}^{2}}{2.5 \times 10^{-3} \mathrm{eV}^{2}}\right\} \\
& \times\left\{\frac{\mathrm{L}}{820 \mathrm{~km}}\right\}
\end{aligned}
$$

0.4 upgrade to 2 MW

T2K:

VOM: $\Delta_{31} \neq \pi / 2$
$\stackrel{\uparrow}{\longleftrightarrow}$ Matter Effect:

Beam 0.5\%

T2K

For LARGE δm_{31}^{2}

Search for v_{e} appearance

$$
J=\sin 2 \theta_{12} \sin 2 \theta_{23} \sin 2 \theta_{13} \cos \theta_{13} \sin \delta
$$

$$
\Delta_{21}=\delta m_{21}^{2} L / 4 E
$$

$$
\text { At } \delta=0 \text { or } \pi
$$

$$
\left\langle P\left(\nu_{\mu} \rightarrow \nu_{e}\right)\right\rangle=\frac{1}{2} \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13}+\cos ^{2} \theta_{23} \sin ^{2} 2 \theta_{12} \Delta_{12}^{2}
$$

$$
\approx 0.5 \%
$$

$$
\left\langle P\left(\nu_{\mu} \rightarrow \nu_{e}\right)\right\rangle_{T 2 K} \approx 0.5 \%
$$

$$
0.5 \% \nu_{e} \text { in beam }
$$

$$
\left\langle P\left(\nu_{\mu} \rightarrow \nu_{e}\right)\right\rangle=\frac{1}{2} \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13}-\frac{1}{2} J \cdot \Delta_{21}+\cos ^{2} \theta_{23} \sin ^{2} 2 \theta_{12} \Delta_{12}^{2}
$$

NOvA:
 $$
\delta m_{31}^{2}>0 \quad \delta m_{31}^{2}<0
$$

Beam 0.5-1\%

Phase I

Sensitivity approx 0.5-I\%

Correlations between Neutrinos and Antineutrinos:

NOvA:

in the overlap region

$$
\begin{array}{ll}
\left\langle\mathrm{P}\left(\nu_{\mu}->\nu_{\mathrm{e}}\right)\right\rangle \% \\
\langle\sin \delta\rangle_{+}-\langle\sin \delta\rangle_{-} & =2\langle\theta\rangle / \theta_{\text {crit }} \approx 1.4 \sqrt{\frac{\sin ^{2} 2 \theta_{13}}{0.05}}
\end{array}
$$

exact along diagonal --- approximately true throughout the overlap region!!!

$$
\begin{gathered}
\theta_{\text {crit }}=\frac{\pi^{2}}{8} \frac{\sin 2 \theta_{12}}{\tan \theta_{23}} \frac{\delta m_{21}^{2}}{\delta m_{31}^{2}}\left(\frac{4 \Delta^{2} / \pi^{2}}{1-\Delta \cot \Delta}\right) /(a L) \sim 1 / 6 \\
\text { i.e. } \sin ^{2} 2 \theta_{\text {crit }}=0.10
\end{gathered}
$$

T2K:

$$
\begin{aligned}
& \langle\sin \delta\rangle_{+}-\langle\sin \delta\rangle_{-}=2\langle\theta\rangle / \theta_{c r i t} \approx 0.47 \sqrt{\frac{\sin ^{2} 2 \theta_{13}}{0.05}}
\end{aligned}
$$

At Vac. Osc. Max. $\left(\Delta_{31}=\frac{\pi}{2}\right)$

$$
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)+P\left(\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}\right) \approx 2 \sin ^{2} \theta_{23} \sin ^{2} 2 \theta_{13}
$$

directly comparable to reactor

$$
1-P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=\sin ^{2} 2 \theta_{13}
$$

$$
\begin{gathered}
\text { Б } \quad \sin ^{2} 2 \theta_{23}=0.96 \\
\text { b } \quad \sin ^{2} \theta_{23}=0.4 \text { D } 0.6 \\
\\
\left(4^{*} 0.4^{*} 0.6=0.96\right)
\end{gathered}
$$

Mena + Parke: hep-ph/06090 I I

What about combining T2K and NOvA? Neutrinos Only

$$
\langle\sin \delta\rangle_{+} \quad-\quad\langle\sin \delta\rangle_{-}
$$

$$
\approx 0.47 \sqrt{\frac{\sin ^{2} 2 \theta_{13}}{0.05}}
$$

$\langle\sin \delta\rangle_{+} \quad-\quad\langle\sin \delta\rangle_{-}$

$$
\approx 1.4 \sqrt{\frac{\sin ^{2} 2 \theta_{13}}{0.05}}
$$

(ρL) for NOvA three times larger than (ρL) than T2K.

BetaBeams (nubar_e) at Fermilab:

${ }^{6} \mathrm{He}^{2+},{ }^{8} \mathrm{Li}^{3+}$

$$
\begin{gathered}
\nu_{\mu} \rightarrow \nu_{e} \quad \mathrm{~V} \quad \bar{\nu}_{e} \longrightarrow \bar{\nu}_{\mu} \\
P\left(\nu_{\mu} \rightarrow \nu_{e}\right)>P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}\right) \quad \text { for Normal Hierarchy } \\
\text { and } \quad P\left(\nu_{\mu} \rightarrow \nu_{e}\right)<P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}\right) \quad \text { for Inverted Hierarchy, }
\end{gathered}
$$

Olga Mena + SP hep-ph/0709nnn

Way Forward:

Signal Events =
Fid. Mass

$$
\begin{aligned}
& \text { * P.O.T. (beam power*time) } \\
& \quad \text { * Efficiency }
\end{aligned}
$$

2nd Oscillation Maximum

Broadband Beam: Same L, Lower E Fermilab to DUSEL

Narrow Band Beam: Same E, Longer L T2KK

In VACUUM the SAME but NOT in MATTER

$$
\sin ^{2} 2 \theta_{13}=0.04
$$

$$
P_{\mu \rightarrow e} \approx\left|\sqrt{P_{\text {atm }}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{\text {sol }}}\right|^{2}
$$

L=1200 km to "DUSEL"

review 2007: Nunokawa, Parke and Valle
where $\sqrt{P_{a t m}}=\sin \theta_{23} \sin 2 \theta_{13} \frac{\sin \left(\Delta_{31} \mp a L\right)}{\left(\Delta_{31} \mp a L\right)} \Delta_{31}$

$$
\text { and } \sqrt{P_{\text {sol }}}=\cos \theta_{23} \sin 2 \theta_{12} \frac{\sin (a L)}{(a L)} \Delta_{21}
$$

$P_{\mu \rightarrow e} \approx\left|\sqrt{P_{a t m}} e^{-i\left(\Delta_{32} \pm \delta\right)}+\sqrt{P_{s o l}}\right|^{2}$
depends on θ_{13} amplification or suppression by matter (E)
Suppression \geq Enhancement
independent of θ_{13}
\approx independent of matter effect
$\mathrm{L} / \mathrm{E} \geq$ significant fraction of $500 \mathrm{~km} / \mathrm{GeV}$
Event rate: $E(E / L)^{2}$

Neutrino Factory: muon storage ring

$C P$

$$
\nu_{\mu} \rightarrow \nu_{e}
$$

$$
\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}
$$

CPT across diagonals

$$
\nu_{e} \rightarrow \nu_{\mu}
$$

$$
\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}
$$

CP

- First Row: Superbeams where ν_{e} contamination $\sim 1 \%$
- Second Row: ν-Factory or β-Beams, no beam contamination

Fractional Flavor Content varying $\cos \delta$

- Size of $\left|U_{e 3}\right|^{2}$
- Hierarchy?
- CPV ?
- Maximal \{23\} Mixing ?
-
- New Interactions and Surprises !!!

Mossbauer Neutrinos Review:

Mossbauer effect with Neutrinos in the ${ }^{3} \mathrm{H}-{ }^{3} \mathrm{He}$ system:

$$
\begin{array}{ll}
\text { Source: }{ }^{3} \mathrm{H} \rightarrow\left({ }^{3} \mathrm{He}+e_{B}^{-}\right)+\bar{\nu}_{e} & \text { count via } \\
\text { Detector: } \bar{\nu}_{e}+\left({ }^{3} \mathrm{He}+e_{B}^{-}\right) \rightarrow{ }^{3} \mathrm{H} & \text { decay or } \\
Q=18.6 \mathrm{keV} \text { and } \Gamma_{3_{H}}=1.2 \times 10^{-24} \mathrm{eV} & \text { mass spectro. } \\
\text { Various line broadening effects which significantly increase } \Gamma_{e f f} & \\
\text { Serious technical difficulties exist but it is not impossible (Raghaven, Potzel) } &
\end{array}
$$

For $\Gamma_{e f f} \sim 10^{-11} \mathrm{eV}\left(\Delta E / E \sim 10^{-15}\right)$ then $\sigma \sim 10^{-33} \mathrm{~cm}^{2}!!!$

Do Mossbauer Neutrinos Oscillate? YES
(Akhmedov, Kopp, Lindner 0802.2513, 0803.1424)
(see also Bilenky, Feilitzsch, Potzel)

ν_{e} Disappearance

$$
\begin{aligned}
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)= & 1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21} \\
& -\sin ^{2} 2 \theta_{13}\left[\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right]
\end{aligned}
$$

$\Delta_{i j} \equiv \frac{\Delta m_{i j}^{2} L}{4 E}$ (kinematic phase).
$\Delta_{21}=\Delta_{31}-\Delta_{32}$.
$\cos ^{2} \theta_{12}>\sin ^{2} \theta_{12}$

- for Normal Hierarchy (NH): $\left|\Delta_{31}\right|>\left|\Delta_{32}\right|$

1875
phase of atmospheric oscillation ADVANCES by $2 \pi \sin ^{2} \theta_{12}$ for every solar osc.

- for Inverted Hierarchy (IH): $\left|\Delta_{31}\right|<\left|\Delta_{32}\right|$
phase of atmospheric oscillation RETARDED by $2 \pi \sin ^{2} \theta_{12}$ for every solar osc.

Combining the
Atm Osc:

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}
$$

$$
-\frac{1}{2} \sin ^{2} 2 \theta_{13}\left\{1-\sqrt{\left(1-\sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}\right)} \cos \left(2 \Delta_{e e} \pm \phi_{\odot}\right)\right\}
$$

- $\frac{1}{2} \sin ^{2} 2 \theta_{13}\left(1 \mp \sqrt{1-\sin ^{2} 2 \theta_{13} \sin ^{2} \Delta_{21}}\right)$ gives the amplitude modulation.
- the $\left(2 \Delta_{e e} \pm \phi_{\odot}\right)$ part:
- \pm Hierarchy: + Normal and - Inverted.
- linear term $2 \Delta_{e e} \equiv \Delta m_{e e}^{2} L / 2 E$:

$$
\begin{aligned}
\Delta m_{e e}^{2} & =c_{12}^{2}\left|\Delta m_{31}^{2}\right|+s_{12}^{2}\left|\Delta m_{32}^{2}\right|>0 \\
& =\left|m_{3}^{2}-\left(c_{12}^{2} m_{1}^{2}+s_{12}^{2} m_{2}^{2}\right)\right|
\end{aligned}
$$

ν_{e} weighted average of m_{1}^{2} and m_{2}^{2}

- everything else ϕ_{\odot} : and only depends on Δ_{21} and θ_{12}.

The Phase:

- $\phi_{\odot}=\arctan \left(\cos 2 \theta_{12} \tan \Delta_{21}\right)-\Delta_{21} \cos 2 \theta_{12}$

$$
\begin{aligned}
& \phi_{\odot}\left(\Delta_{21}+\pi\right)=\phi_{\odot}\left(\Delta_{21}\right)+2 \pi \sin ^{2} \theta_{12}, \\
& \left.\frac{d \phi_{\odot}}{d \Delta_{21}}\right|_{n \pi}=0 \\
& \text { for } n=0,1,2, \ldots
\end{aligned}
$$

Strategy:

(I) Precision ($<1 \%$) measurement of $\delta m_{e e}^{2}$ at L around 10 m

But this is after 20 or so oscillation !!! What about smearing in the L/E?

Smearing L:

$$
P_{\odot}=0
$$

(note: amplitude modulation, 40% at solar minimum!)

$$
\begin{gathered}
d<L / 200 \\
L^{\prime} \approx L\left(1+\frac{1}{2} \frac{h^{2}}{L^{2}}\right) \text { so } h<L / 10
\end{gathered}
$$

OK

Phase I: Measurement of $\delta m_{e e}^{2}$

(the atm δm^{2} near the first osc. minima for a $\bar{\nu}_{e}$ disapp. exp.)
Event Rate:

$$
R_{\text {ench }}=3 \times 10^{5}\left(\frac{S}{1 M C i}\right)\left(\frac{M_{T}}{100 g}\right)\left(\frac{L}{10 m}\right)^{-2} d a y^{-1}
$$

Minakata and Uchinami: hep/0602046

- Run IIB $=10$ measurement points at $(1 / 5,3 / 5, \cdots 19 / 5) L_{O M}$
- 10^{6} events each, $\sigma_{\text {usys }}=0.2 \%, \sigma_{c}=10 \%$
- Sensitivity in $\delta m_{e e}^{2} \approx 0.3\left(\frac{\sin ^{2} 2 \theta_{13}}{0.1}\right)^{-1} \%$

Phase II: phase at 350 m

Event Rate:

$$
R_{\text {ench }}=2 \times 10^{2}\left(\frac{S}{1 M C i}\right)\left(\frac{M_{T}}{100 g}\right)\left(\frac{L}{350 m}\right)^{-2} d a y^{-1}
$$

5 Baselines: $L=350 \pm 5 \pm 10 \mathrm{~m}$

Sensitivity:

Reactor Neutrinos:

Detected Spectrum

Hawaii Antineutrino Observatory Hanohano

Idea: detector based on KamLAND technology adapted for deep ocean, but $>10 \times$ larger (for good counting rate)

Make it mobile, sinkable and retrievable.

Engineering study finds no stoppers nor significant development needed.

Geology: mid-Pacific and elsewhere for geoneutrinos from mantle.

Physics: off-shore from reactors for neutrino oscillations studies. (See Steve Dye talk and poster) Mixing angles, and unique mass hierarchy determination. ???

Fourier Transforms: Hanohano

$$
P\left(\bar{\nu}_{e} \rightarrow \bar{\nu}_{e}\right)=1-\cos ^{4} \theta_{13} \sin ^{2} 2 \theta_{12} \sin ^{2} \Delta_{21}
$$

sub-dominant frequency ($1 / 5$ the power)

IH:
shoulder at
higher freq.
$\sin ^{2} 2 \theta_{13}>0.05$ for 10 Kton-yr
$\sin ^{2} 2 \theta_{13}>0.02$ for 100 Kton-yr

Uncertainty in E scale ??? between 2 and 8 MeV !!!

$$
\begin{aligned}
& E_{o b s}=E_{\text {true }}+0.015 \times\left(E_{\text {true }}-4.5\right) \\
& E_{o b s}=E_{\text {true }}-0.015 \times\left(E_{\text {true }}-4.5\right)
\end{aligned}
$$

Summary \& Conclusions

The phase advancement or retardation of the atmospheric oscillation allows for the possibly determination of the neutrino mass hierarchy in $\bar{\nu}$ disappearance experiments: but it's quite a challenge:

- Even for monochromatic $\bar{\nu}$ beams (Mossbauer) this would require a high precision measurement of $\delta m^{2} \square$ around the first oscillation minimum as well as a determination of the phase 20 or so oscillations out!

Challenging, but the high event rate that maybe possible with Mossbauer neutrinos could make this possible with modest size detectors.

- Reactor neutrinos using multi-cycle analyses (Fourier) requires high precision relative determination of the neutrino energy from 2 to 8 MeV .
E.g. what you call a " 6 MeV neutrino" must have twice the energy of what you call a " 3 MeV neutrino" to about 1%, otherwise the hierarchies can be confused. This requirement is very challenging for reactor neutrinos.

For 3 neutrinos the CP violating term is

$$
\Delta P_{C P}=J \sin \Delta_{21} \sin \Delta_{32} \sin \Delta_{31}
$$

The form of this expression is the same in vacuum and uniform matter except for replacement of the vacuum parameters with their matter counter parts.

In the limit $L \rightarrow 0$ these two expression must be are identical !!!
Use this fact to derive a relationship between the vacuum parameters and the matter counter parts similar to what we have for 2 neutrinos

$$
\delta m_{0}^{2} \sin 2 \theta_{0}=\delta m_{N}^{2} \sin 2 \theta_{N} ?
$$

And yet the nothing-particle is not a nothing at all

We are "due" for a supernova anytime now we can only hope that it will hold off until the science of neutrino astronomy is further advanced.

