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Summary

1) Electron-cloud basics

2) ecloud program at the FNAL MI

3) Simulation fits to ecloud measurements with RFA (~mid-2007)

4) Extrapolation of simulations

— High beam intensity

— Beam energy dependence

— Compare fRF=53 MHz vs. 212 MHz

5) Effects on the beam (very preliminary)

6) Comparison of MI vs. proposed CERN PS2

7) CESR-TA results

8) MI future plans and proposals

9) Conclusions

My gratitude to I. Kourbanis and R. Zwaska
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Electron cloud basics

• Intense beams lead to an electron cloud in the chamber
— Particularly for positively-charged beams

• Typical average e– density: ne~1010 – 1012 m–3

• Significant limitation at PEP-II, KEKB, SPS, PSR,…
— Average luminosity

— Particle losses

— Emittance growth

— Instabilities

— Interference with diagnostics

— Excessive cryogenic heat load, …

• Almost always: the main ingredient is the SEY of chamber surface
— But this is strongly coupled with chamber geometry, beam fill pattern, …

• Typically, divide effort into two:
— Ecloud build-up (95% of this talk), obtained with LBNL/SLAC code “POSINST”

— Effects from ecloud on the beam, obtained with LBNL code “WARP/POSINST”
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ecloud program at the MI

• Measurements and simulations for the past 2-3 years

— In support of the MI upgrade goal:
• Nb=3x1011 per bunch

• Ntot=1.6x1014 per pulse (~540 bunches)

• Presently:

— Nb~1x1011 (but <500 bunches)

— e– cloud observed, but is not an operational limitation

• Program goal: will e– cloud be a limitation at 3x1011?

— If so: mitigate
• Low-SEY coatings, clearing electrodes,…

• New test chambers and instrumentation to be installed this year
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Sample RFA signals at MI(*)
4 booster trains, Nb=(9.1–9.5)e10

even gaps

uneven gaps

RFA signal

~60 GeV

(*) I. Kourbanis report, ~26 Aug. 2007
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RFA measurements and fits
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data from "e-Cloud MI Measurements,"
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Conclusion:
- Nicely consistent solution with peak SEY δmax≈1.3
Caveats:
- we fixed Emax=300 eV
(you can usually trade off δmax for Emax to some extent)
- RFA data not quite consistent with microwave dispersion data
⇒ need to re-examine

Simulation fits: Je vs. δmax  

peak SEY
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Extrapolate average ne vs. Nb
assumes: 500 consecutive bunches and peak SEY δmax=1.3
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Conclusions:
1) ne~1012 m–3

2) Threshold behavior
in FF region

3) But not in dipole
4) Peak at Nb~1011

due to ~300 eV e–-
wall impact energy

5) Why does ne
increase at high Nb
at injection energy?

Eb=9 GeV

Eb=120 GeV

Eb=9 GeV
Eb=9 GeV

Eb=9 GeV

Eb=120 GeV

Eb=120 GeV

Eb=120 GeV



M. Furman, ecloud   p. 8FNAL Future Directions, May 2009

Eb dependence of ne in MI dipole
assumes: 500 consecutive bunches and peak SEY δmax=1.3
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Conclusions:
1)Mild dependence on beam energy, except at transition

crossing
• Consistent with microwave dispersion measurements

(N. Eddy et al, PAC09 paper WE4GRC02), but not
with RFA measurements

2)Large e–-wall impact energy leads to lower ne at high Nb

Nb=1e11

Nb=3e11
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fRF=53 MHz vs 212 MHz in MI FF region
ne vs. Ntot at Eb=9 GeV, assumes δmax=1.3
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Compared 2 fill patterns:
- 500 bunches at Nb and σz

- 2000 bunches at Nb/4 and σz/4

Conclusions:
1)Higher threshold at 212 MHz by factor ~2

relative to 53 MHz
2)Above threshold, ne lower by factor ~2-4
3) In dipole: no such beneficial effect of

higher fRF (not shown here)
4)Need to examine other beam energies

Ntot



M. Furman, ecloud   p. 10FNAL Future Directions, May 2009

Effects on the beam

• Preliminary rough estimate of
threshold for emittance
growth:

— ne~(0.1–1)x1012 m–3

• This is ~the same range of our
build-up simulations +
measurements

• Examine multi-bunch effects
(not even started)

• Need to pursue this! K. G. Sonnad, M. A. Furman and J.-L. Vay, "Progress on electron
cloud effects calculations for the FNAL main injector," LBNL-767E, 9
June 2008
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• Very similar ecloud features in both machines

—PS2 stands to profit from current ecloud program at MI

• See table on next page for parameters I actually used in the simulations

MI upgrade
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PS2 and MI upgrade
main parameters used in dipole ecloud simulations*

64 x 64 typ.64 x 64 typ. grid size

3x10–11 typ.3x10–11 typ. Δt [s]

20,000 max20,000 max no. macropart.

3x10114.2x1011 Nb

(0.62, 0.76, 150) @ extr.(1.95, 1.83, 330) @ extr.

(2.29, 2.81, 560) @ inj.(6.3, 5.9, 1000) @ inj. (σx, σy, σz) [mm]

(6.15, 2.45) (ellip.)(6, 3.5) (ellip.) (a,b) [cm]

8 – 1204 – 50 K.E. [GeV]

0.1022 – 1.3910.136 – 1.7 B [Tesla]

~ 500168 or 84 no. bunches

5340 fRF [MHz]

588180 h

1925 or 50 tb [ns]

1346.4

PS2

3319.419 C [m]

MI upgrade

(*) NB: actual parameters are evolving; see https://twiki.cern.ch/twiki/bin/view/Main/PS2Collaboration for PS2 current design, and
http://projectx.fnal.gov for MI upgrade.
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CESR-TA sample results:
tune shifts along bunch train

• CESR-TA = dedicated facility to study
ecloud and ultra-low beam emittance
(for ILC damping rings)

• Systematic program of ecloud
measurements and simulations is
ongoing:

— Both e+ and e– beams

— Both RFA and microwave
dispersion techniques

— Possible direct measurement of
SEY

— Several simulation codes

• Current results are providing useful
measurements of photoelectric and
secondary emission data

• Near future: beam instability studies from J. Crittenden et al., PAC09 paper FR5RFP077

e+ beam

e– beam
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MI plans

• Two new test chambers will be installed soon
— 1 m long each

— one bare StSt, the other TiN-coated

— 3 new RFA’s (plus one old ANL RFA)

• Will continue microwave dispersion measurements
— New antennas

• BBB tune measurements?
— Similar to CESR-TA

— Train of M bunches followed by a “witness bunch” H buckets behind the train,
then measure coherent Δνx and Δνy as a function of M and H for every bunch

• New measurements should allow better fits and more robust extrapolations
to high intensity
— Hopefully will resolve existing discrepancy between RFA and microwave

dispersion measurements
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Microwave Transmission
(slide courtesy of N. Eddy, PAC09-WE4GRC02)
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From plasma physics, expect a microwave travelling down a waveguide
to experience a phase shift due to a homogeneous plasma
From the microwave dispersion relation
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Electron Cloud Experimental Upgrade - 2009
(slide courtesy of R. Zwaska)

To be installed in Main Injector, Summer 2009 :
• 2 New experimental Chambers

— Test TiN coating for ECloud suppression
— Measure spatial extinction of ECloud

• 3 Fermilab and 1 Argonne RFA
— Retarding Field Analyzers
— Directly measure electron flux

• Compare designs

• 3 microwave antennas and 2 absorbers
— Measure ECloud density by phase delay of

microwaves

Fermilab RFA

TiN Coated
Chamber

Uncoated
Chamber

Microwave
Antennas Microwave

Absorbers

Fermilab RFAs

Argonne RFA

Beam
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Conclusions

1) Fits of simulations to measurements show nicely consistent results for peak SEY ~1.3
• Caveat 1: SEY changes with time (conditioning, venting, …)
• Caveat 2: we fixed Emax=293 eV; probably OK, but need to pin down with broader, simultaneous, fits

2) e-cloud density in range ~(0.1–1)x1012 m–3 in steady state
3) On average, beam neutralization ~few %

• Caveat: near beam, ne is much higher, typically by x10
4) Qualitatively different behavior in field-free region and dipole magnets as a function of Nb

• Looks like effect will be weaker in dipoles at Nb=3e11 than at 1e11 by a factor ~2 (but see caveat 2 above)
5) Higher fRF is beneficial in FF region but perhaps not in dipole

• There may be an optimal value for fRF

6) Most important variable is SEY
• Surest way to reduce ecloud effects is to lower SEY

7) MI and PS2 remarkably similar, at least thus far in the exercise
What next:
a) Complete set of simulations for FF region and dipole as a function of Nb, fRF and Eb

b) Explore dependence on other SEY parameters (especially Emax) and other model variables
c) Explore other regions of the chamber (quads,…)
d) Analyze expected new data
e) Simulate beam train/winess bunch tune shifts
f) Ascertain numerical convergence (most likely okay)
g) Resolve why RFA and microwave dispersion measurements show qualitatively different dependencies on Eb

h) Quantify effects on the beam and validate !
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Extra material
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M-dependence at Nb=(10-30)x1010

ne vs. M (KEb=8 GeV, continuous train of bunches)

• Threshold in M strong function of Nb:

—Mth=50 for Nb=30x1010

—Mth=200 for Nb=15x1010

• For a dipole, Mth=200 for Nb=30x1010
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Compare field-free vs. dipole bend
ne vs. δmax (Eb=60 GeV, same fill patterns, σz=19 cm)

• Threshold as a f. of δmax in field-free region

• No threshold in dipole

• ne in dipole ~3 times larger than in F.F. region

—not yet explained
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