USC Possible USC Experiments at NML

Patric Muggli

<u>muggli@usc.edu</u>

Reza Gholizadeh

gholizad@usc.edu

University of Southern California

PWFA experiments with collider beams

Two important PWFA issues related to PWFA-LC:

1) plasma/gas behavior with large power deposition from the drive beam (P. Muggli)

2) Plasma ion motion due to very dense, low emittance high charge beams (R. Gholizadeh)

USC PLASMA WAKEFIELD ACCELERATOR* 101

Two-beam, co-linear, plasma-based accelerator

- Deceleration, acceleration, focusing by plasma
- Accelerating field/gradient scales as N/σ_z^2
- N=2x10¹⁰: σ_z =600 µm, n_e=2x10¹⁴ cm⁻³, E_{acc}~100 MV/m, B₀/r=6 kT/m σ_z = 20 µm, n_e=2x10¹⁷ cm⁻³, E_{acc}~ 10 GV/m, B₀/r=6 MT/m
- Conventional accelerators: $E_{acc} < 150 \text{ MV/m}$, $B_{\theta}/r < 2 \text{ kT/m}$
- High-gradient, high-efficiency energy transformer

Tremendous progress with PWFA
 Acceleration, transverse dynamics, positrons, etc.
 "Single bunch" experiments (1Hz)

P. Muggli, Lake Geneva, 5/12/09

PWFA-LC Concept (an example)

FACET*@SLAC: single, 1m-long, +25 GeV stage, e⁻ and e⁺
1-10 Hz rep. rate ("single shot")

P. Muggli, Lake Geneva, 5/12/09

*<u>F</u>acilities for <u>A</u>ccelerator S<u>c</u>ience and <u>E</u>xperimental <u>T</u>est Beams

High average drive beam power, finite transfer efficiency

Questions:

What happens to the plasma and gas?

Does the plasma recombines slowly because of high T_e ?

Does heat deposition create shock wave in the plasma and gas?

Does the gas expand radially and does it have a lower density for the next bunch?

Can a favorable equilibrium be reached over the bunch train?

How to reach the equilibrium?

single bunch intensity over 10 nC possible

The beam can be compressed and focused to (20x20x20)µm³ (similar to SLAC beam at FFTB!)

Largest energy loss is 1.5GeV in 10GeV/m plasma with $n_e = 10^{17} cm^{-3}$

Half the beam energy (2.5J) is deposited in a gas/plasma 1.5GeV/10GeV/m=15cm long and c/ω_p (17µm) in radius (0.14mm³)

 $\Delta T=Q/mC=4272^{\circ}C$ for liquid water

This repeats 3000 times, every 333ns, at 5Hz

P. Muggli, Lake Geneva, 5/12/09

- Measure the energy spectrum of successive bunches in the train using a gated camera and prompt radiation (Cherenhov?)
- 2) Measure focusing ...

Sample gas/plasma state at bunches interval of 333 ns with bunches

- Measure the energy spectrum of successive bunches in the train using a gated camera and prompt radiation (Cherenhov?)
- 2) Measure focusing ...

Sample gas/plasma state at bunches interval of 333 ns with bunches

3) Interferometry along the plasma

Delay laser pulse wrt e⁻ beam for evolution at <333ns scale after each bunch

Phase shift due to plasma and gas density variations (recombination, thermal expansions, etc.)

Use Li plasma source

Field ionization for plasma creation

Standard diagnostics for beam size and shape: OTR

Standard diagnostics for beam energy: imaging spectrometer with Cherenkov radiator

Interferometry requires laser synchronized with e⁻ beam, ns time scale

Measurement of Ion Motion Using Frequency-Domain Holography

Reza Gholizadeh, Patric Muggli University of Southern California

P. Muggli, Lake Geneva, 5/12/09

Frequency-Domain Holography (FDH)

ISC

Reference Pulse

- Phase Shift Δφ is measured by comparing Probe phase with Reference phase
- Phase Shift Δφ depends on the index of refraction
- Probe pulse is chirped to extract the information on longitudinal position
- •The entire 3D image can be made in a single shot by using a chirped wave plane.

N. H. Matlis et al., "Snapshots of Laser Wakefields", Nature Physics 2, 749 - 753 (2006)

Proposed Experiment:

- Inside the bubble, $\omega_{pe}=0$
- Plasma Density= 10¹⁷ cm⁻³

$$\rightarrow \Delta \varphi \sim \pi/2$$

- Laser Wavelength λ =500nm
- Capillary Length L=1cm
- Ion Mass=1836 amu (H) (in order to maximize ion motion)

USC Experimental Expertise on Plasma Sources and FDH Brookhaven:

- 2 cm long capillary already available
- Collaboration with Prof. Downer's group in near future
- Experience with FDH

P. Muggli, Lake Geneva, 5/12/09

Take advantage of the <u>unique</u> collider beam format at the ILC Test and AARD Facility at the New Muon Lab (NML) for PWFA experiments

Address PWFA collider issues:

1) Effect of power deposition in the plasma on the acceleration and focusing process

2) Existence of ion motion

- Goals: complement experiments at SLAC-FACET and BNL-ATF
 - use experience acquired at SLAC-FACET and BNL-ATF: plasma source, diagnostics, ...
 - devise solutions to mitigate these potentially negative effects