Possible IIT Experiments at NML

Dan Kaplan

ILLINOIS INSTITUTE OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.edu

Workshop on Future Directions for Accelerator R&D at Fermilab Lake Geneva, WI II-I3 May 2009

- D. Kaplan, Y. Torun:
 - µ cooling
- L. Spentzouris:
 - high-intensity beams & space-charge
 - novel metamaterials & applications
- \exists interested grad students...

Only ionization cooling fast enough ($\tau_{\mu} = 2.2 \ \mu s$)

– but:

ILLINOIS INST

1. Effect is transverse only

Transforming Lives.Inventing the Future.**www.iit.edu**

- Might hope to cool longitudinally via *dE/dx* curve's slight positive slope above ionization minimum
- But dE/dx "straggling" tail leads to heating
- 2. To optimize cooling requires:
 - low β_{\perp} (strong focusing)
 - large X_0 (low Z)
 - low E_{μ} (typ. 150 < p_{μ} < 400 MeV/c)
- 3. Can "rotate" portion of effect into longitudinal phase plane via "emittance exchange"
 - Allows all 6 phase-space dimensions to be cooled

poling

G. I. Budker and A. N. Skrinsky, Sov. Phys. Usp. **21**, 277 (1978) A. N. Skrinsky and V. V. Parkhomchuk, Sov. J. Part. Nucl. **12**, 223 (1981)

- Large international, interdisciplinary collaboration:
 - >100 particle and accelerator physicists and engineers from Belgium, Bulgaria, China, Italy, Japan, Netherlands, Russia, Switzerland, UK, USA
- Construction now in progress at Rutherford Lab in UK

- Demonstrate 6-dimensional muon cooling
 - 6D μ cooling ring
 - other 6D cooling experiments
- Test optical stochastic cooling?
 - demo in progress at Bates?

- Also some small, demonstration rings
 - D. Summers et al.: Large-admittance sector cyclotron

D \mathbf{D} \mathbf{F} \mathbf{F} **RF** Cavity D D ICOOL Method 1 **Reference** circle Used here ICOOL Method 2 Reference track D D Magnet \mathbf{F} \mathbf{F} D $1 \text{ m} \rightarrow$

D. Cline et al.: High-pressure dipole ring

Figure 5: Ring cooler with dipole.

ILLINOIS INSTITUTE OF TECHNOLOGY Transforming Lives. Inventing the Future. www.iit.edu

Proposed NML Schematic Layout (not to scale)

H.E. e[±] interacting in target certainly make muon pairs (Bethe-Heitler)

W.A. Barletta, A.M. Sessler / Nucl. Instr. and Meth. in Phys. Res. A 350 (1994) 36-44

- for muon cooling, want
 KE < 300 MeV or so
- need to do rate estimate
- but ~10¹⁴ e/s available
- $\implies substantial \ \mu \ rate \ even$ $if only 10⁻⁸ \ \mu/e \ or \ less$

- I suggest we put the "muon" back in New Muon Lab!
- NML may come on-line after MC 5-y plan
- Could test one or more 6D cooling techniques chosen as part of that plan

(+ optical stochastic cooling if still of interest after Bates work)