dCache Status

Timur Perelmutov for the dCache team OSG Storage Seminar Fermilab June 31, 2009

Outline

- Dcache Features and Plans
 - New Features in dCache 1.9
 - Release Policies and Schedule
 - SRM Status and Plans
- Best Practices
 - Data Safety
 - Configuration Best Practices

New Features

- Reliable Deletion Registration
- XACML gPlazma plug-in
- Logging Context Propagation
- New Pool Code, Pool Migration Module
- Chimera
- Access Control Lists
- Info Service
- Gridftp Door

Reliable Deletion Registration

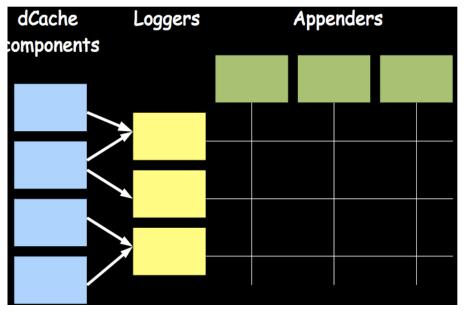
- Eliminates leak of pool space
- PNFS outage could result in false "File Not Found" errors
- Precious files could not be safely deleted by pool automatically
- Reliable Deletion Registration gives authoritative positive answer to question "Was file Deleted?" or "Is file safe to Delete?"
- Requires PNFS with Trash DB support

XACML gPlazma plug-in

- Authorization Mapping using GUMS and SCAS
- Example configuration

```
# XACML-based grid VO role mapping
xacml-vo-mapping="ON"
xacml-vo-mapping-priority="5"
XACMLmappingServiceUrl="https://fledgling09.fnal.gov:8443/
    gums/services/GUMSXACMLAuthorizationServicePort"
# Time in seconds to cache the mapping in memory
xacml-vo-mapping-cache-lifetime="180"
```

Log4j and Logging Context Propagation


- dCache moved to Log4j for logging
- New log4j management commands

```
(System@dCacheDomain) admin > help log4j
log4j appender ls
log4j appender set <appender> -|OFF|FATAL|ERROR|WARN|INFO|DEBUG|ALL
log4j logger ls [-a]
log4j logger attach <logger> <appender>
log4j logger detach <logger> <appender>
log4j logger set <logger> -|OFF|FATAL|ERROR|WARN|INFO|DEBUG|ALL
```

- Logging Context Propagation
 - Have you ever asked
 - What caused this Error Message Printout in Service A Log?
 - Are Error logs for services B and C Related?
 - propagates stack of names of services invocations leading to the logging of the given message
 - 22 Jun 2009 14:36:39 (fapl112_1) [v2:srmGet:17529671 PinManager PoolSetSticky 0001000000000000002935850] java.lang.RuntimeException: Internal repository error

Log4j

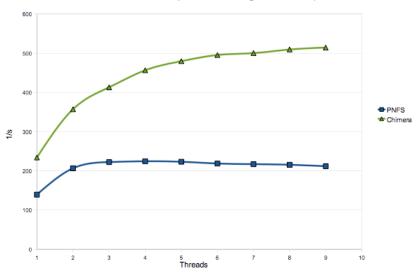
(illustration by Gerd Berhmann, NDGF)

New Pool

- Highly Modular
- Improved Pool Space Accounting
- Support for Berkley DB Pool Repository
 - Fast startup for large pools
 - Reduced memory usage
- Migration Module for copying files between pools
 - Flexible policies
 - Asynchronous
 - Preserves Sticky Flag, works with PinManager

Chimera

- PNFS Namespace Replacement
- Features
 - Chimera is a database schema and a library for working with it
 - All abstractions are implemented as tables and relations instead of app. logic
 - PnfsManager, NFS3/4 demons talk directly to DB
 - Compatible with any JDBC enabled database including PostgreSQL and Oracle
- In production at Several German sites and at NorduGrid Tier1
- Prerequisite for NFS4.1 and some ACL features (inheritance)


Chimera Performance

- Scales with # of CPUs
- No Table level locks, improves parallelism
- One Transaction per one Namespace operation, hence no inconsistent states
- Allows sites to leverage in-house DBA expertise

Scalability of Chimera

(Slide and measurements by Gerd Berhmann, NDGF)

pnfs id + storage info lookup

Chimera Maintainability

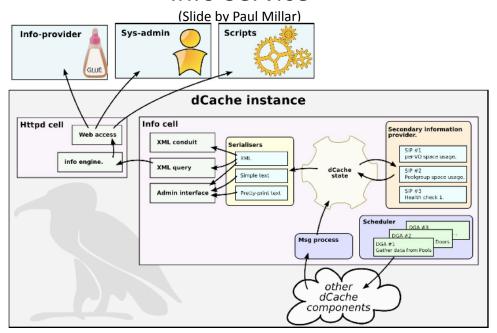
- Usage of regular (customizable) SQL queries for file system maintenance : e.g.
 - space used by users / groups
 - which files have how many copies
 - limited only by the creativity of sys admin
- For backup and high availability services, the native db mechanism can be used.
- easy to use consistence checks against pool repository and tape repository (just SQL queries)

Migration to Chimera

- Migration is described in detail at <u>http://trac.dcache.org/projects/dcache/wiki/pnfsDump2MigratePnfs2Chimera</u>
- Some German sites migrated without dcache.org support and did just find following the wiki page.
- For a regular Tier II migration can be easily done within a day.
- Migration should be tested beforehand to find possible show stoppers (see wiki page above)
- People should use the <u>support@dcache.org</u> if there are issues during the test migration.

Disclaimer

- Chimera is the dCache namespace of the future
- PNFS will remain supported (Possibly by Fermilab part of the dcache collaboration only) until all supported sites migrate to Chimera.
- Certain advanced functionality will not be available in dCache+PNFS configuration
- PNFS is not a product in active development


ACLs

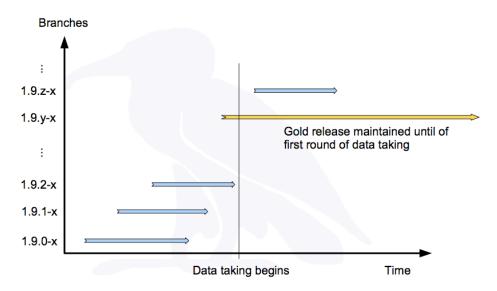
- Available in dCache 1.9.3 and higher
- subset of the NFS version 4 ACLs
- Used in conjunction with POSIX file permission mask
- ACLs are stored in the database on PnfsManager
- Work with Chimera (Full support) and PNFS (Only Subset of functions)
- SRM ACL is not yet implemented
 - ACL is enforced by the door after TURL is negotiated

Info Service

- A robust, best-effort, "one-stop shop" overview of the current status of a dCache instance for external consumption.
 - Robust: the info service will continue to work independently of the rest of dCache.
 - Best-effort: there may be delays in information being updated (1 minute order-of-magnitude).
 - One-stop shop: you should be able to get all the information you require.
- It decouples updates from queries:
 - Querying is fast and robust

Info Service

Gridftp V2


- CKSUM
 - Data Integrity
- MODEX
 - New mode for data transfer
- GETPUT
 - Allows specification of all transfer parameters in one command

Release Policy

- 1.9.3 is available today
- 1.9.4, cut off on July 13, release a week later
- 1.9.5 TBD after 1.9.4 release
 - Golden release, for the duration of first round of data taking
- Time based releases
 - Feature releases are not bound for a particular release

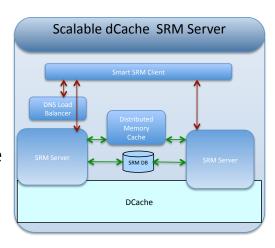
Release Policy

(Illustration by Gerd Behrmann)

Features schedule

- ACL's (1.9.3)
- NFS4.1 (1.9.3) (beta and no security yet, not connected to gPlazma yet)
- Tape protection: tape access by production user (simple ACL's) (1.9.4)
- doors (esp. xrootd) will use light way mechanisms (smaller and after footprint) (1.9.5)
- Improved cost mechanism e.g. for p2p and writing into system.
 (1.9.5)
- NFS4.1 with kerberos and gPlazma (1.9.5)
- Experimental support for Terracotta powered clustered SRM (1.9.5)
- Merging of web pages and GUI as web application (in browser) (unknown)

SRM status


- (most) SRM functionality demanded by WLCG is implemented
 - Status and Error codes
 - Online state management by name
 - Space Management
- No new features until performance, stability, scalability and usability issues are addressed

SRM Performance Improvements

- High CPU load due to GSI Authentication and Credential Delegation
 - cache public and private key pairs used in GSI authentication GSI handshake
 - work with Globus on improvements
 - consider https as a long term solution
- High volume of blocking unscheduled SRM LS operations cause high CPU load on SRM and PnfsManager and starvation of the network connection slots
 - convert SrmLs to a scheduled asynchronous operation
 - consider caching
- Large load due to the internal request timeouts and retries.
 - use lifetime attributes in internal dCache messaging
 - aggressively remove expiring requests
- High Load caused by client requests timeouts and retries
 - require clients to specify the request lifetimes (WLCG wide agreements covering all clients)
- User load can exceed system capacity
 - protection of the all dCache system resources by limiting total number of active operations of each type
 - return SRM Errors triggering exponential back-off of client request submission (WLCG wide agreements covering all clients)

SRM Scalability

- SRM is a single point of entry into a storage
 - Natural bottleneck
 - Single point of failure
- Distributed SRM
 - Scalable
 - More reliable

SRM Error handling and propagation

- SRM Is an interface to Storage
 - all storage errors are SRM errors
- Some errors can be handled automatically
 - example: PinManager may recover from temporary and permanent unavailability of data node
- Certain errors should not be retried internally
 - example: Data unavailable due to Tape error -> return error to the user immediately, not after 4 hours
- Propagate correct error messages though components, this may reduce investigation time and increase understanding
 - example: Data unavailable due to Tape error, return
 UNAVAILABLE, "tape is in NOACCESS state"> instead of current
 ERROR, "Lifetime expired">

SRM Monitoring, Diagnostics tools and Documentation

- Providing more information about immediate state and usage statistics will increase understanding of the system and provide ability to detect and stop abusive usage
- Need to measure and graph all activity, and reasons for non-performance
- performance depends on proper configurations, defaults are too conservative for most systems
 - Proper documentation leads to better understanding of the configuration options by administrators

Data Safety

- How should sites without large tape systems make sure their dCache files are safe?
 - Data on disk is not safe
 - End-to-end checksums guarantee integrity (you will know when you loose your data)
 - Resilient Manager decreases the probability of data loss by replication (is not compatible with Space Manager)
- What are the current best practices for data replication using the dCache Replica Manager?
 - Replica Count of 3 provides good preservation
 - Implement active checksum verification scans
 - Investigate Excluded files and files in Error State
 - Follow the Leader (US CMS T1)

Configuration Best Practices (1) Namespace

- Namespace is the most critical component
 - Allocate proper hardware
 - DB disk is not shared
 - Follow PostgreSQL Configuration guidelines from http://dCache.org and http://www.postgresql.org
 - If PnfsManager queues lengths are routinely greater than 0, your system is overloaded

Configuration Best Practices (2) PoolManager

- PoolManager Domain is also a dCache communication hub
- Do not deploy doors on PoolManager node
- Partition pool space as little as possible
- Make pools of different types be spread as wide as possible to increase hardware utilization in all usage scenarios

Configuration Best Practices (3) Doors

- dCap doors are scalable, no need to have a large number
- Gridftp doors can be scalable with modern clients, but with most current clients they are not
 - Deploy multiple gridftp doors (one per pool node in US-CMS-T1)

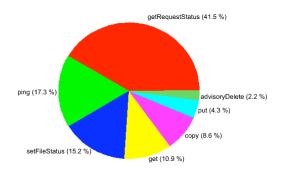
Configuration Best Practices (4) Pools

- System Disks separate from Data disks
- EXT3 used to suffer from fragmentation in near full state with active read/write delete
- XFS performed well for Fermilab Deployment
- Anecdotal info that EXT3 +Latest Kernel work
- Conservatively set number of movers
 - Separate queues for LAN/WAN access, dCap/ Gridftp protocols

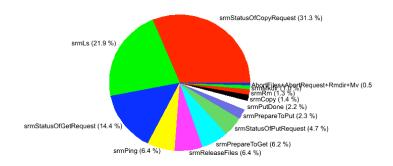
Configuration Best Practices (5) SRM

- Dedicated Host
- TOMCAT_MAX_THREADS is equal to number connected clients
 - Defaults are usually too conservative
 - Increase if you have CPU+MEM
- Server Socket Backlog parameter was set too low
 - New parameter TOMCAT_ACCEPT_COUNT in srm setup.env
 - at least 1024, Setting higher requires changing OS limits
 - Greatly reduces number of failed/abandoned requests due to connection failures

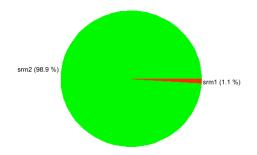
Configuration Best Practices (6) SRM

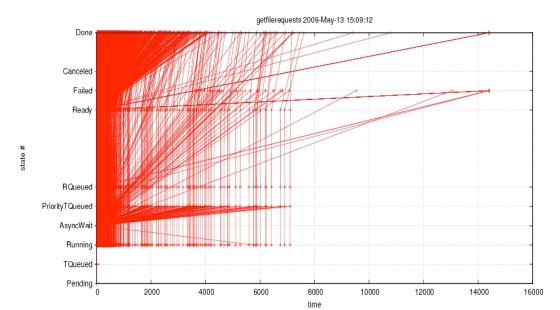

- 6 types of scheduled requests
 - Get, Put, Copy, BringOnline, LS, ReserveSpace
 - Each type has its own scheduler
- Understand Scheduler parameters
 - Srm<Type>ReqThreadQueueSize
 - srm<Type>ReqThreadPoolSize
 - srm<Type>ReqMaxWaitingRequests
 - srm<Type>ReqReadyQueueSize
 - srm<Type>ReqMaxReadyRequests
 - srm<Type>ReqMaxNumberOfRetries
 - srm<Type>ReqRetryTimeout
 - srm<Type>ReqMaxNumOfRunningBySameOwner

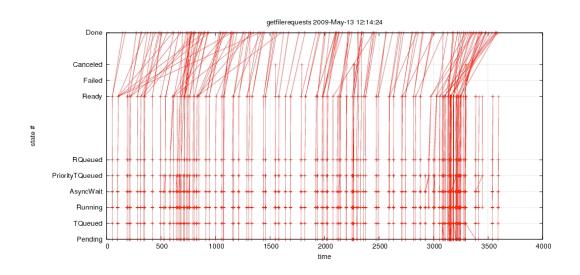
Questions?

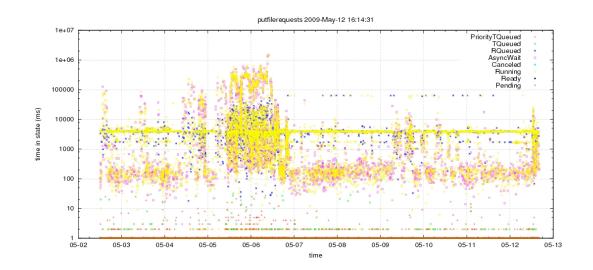

Additional Slides

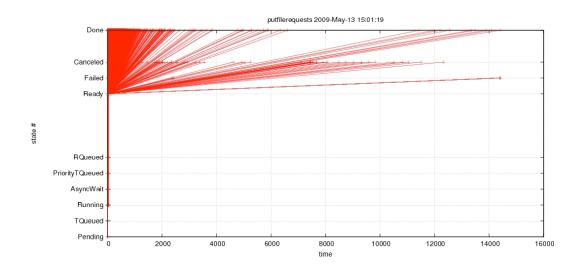
- SRM V1 Usage at FNAL
- SRM V2 Usage at FNAL
- V1 vs. V2
- SRM Execution graphs

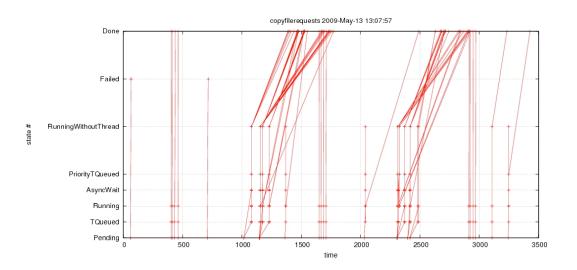

US CMS T1 SRM V1 Usage (May 14, 2009)

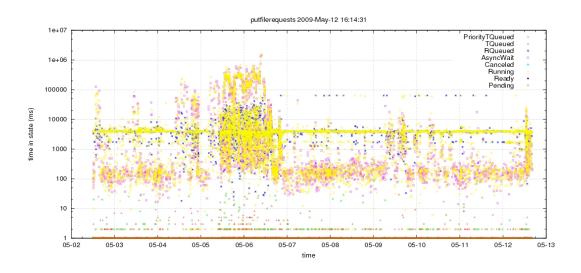

US CMS T1 SRM V2 Usage (May 14, 2009)

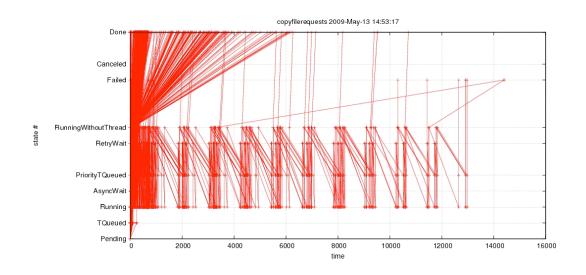

SRM V1 vs. V@ Usage (May 14, 2009)

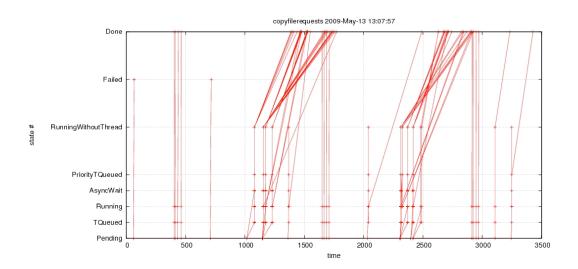

Get dCache SRM Request Execution Time is relative to the moment of submission

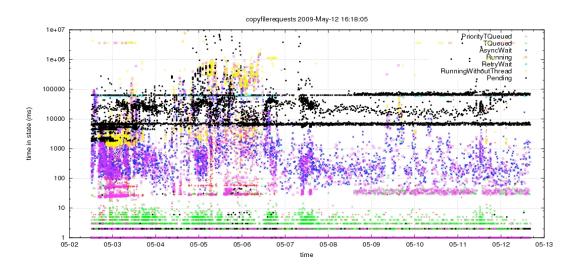

Get dCache SRM Request Execution Absolute Time


Get dCache SRM Request Execution Time spent in different states


Put dCache SRM Request Execution Time is relative to the moment of submission


Put dCache SRM Request Execution Absolute Time


Put dCache SRM Request Execution Time spent in different states


Copy dCache SRM Request Execution Time is relative to the moment of submission

Copy dCache SRM Request Execution Time is relative to the moment of submission

Copy dCache SRM Request Execution Time spent in different states

