
Emerging Technologies:
Hadoop
Brian Bockelman
OSG Storage ‘09

Introducing Hadoop

• Hadoop is a data processing system that
follows the MapReduce paradigm for
scalable data analysis.

• Largest install is at Yahoo, a major
contributor.

• 14PB of online disk.

• Larger clusters are planned

Hadoop and HDFS

• To do large-scale data processing, you need
an underlying file system.

• But to do this affordably, you need a
distributed FS designed for commodity
hardware.

• I.e., stuff all your worker nodes full of
disks.

HDFS

• HDFS is a scalable file system with two
major components:

• Namenode: central metadata server.

• Datanode: file servers for data.

• Lots of design decisions in HDFS will look
familiar to WLCG sites.

HDFS Design

• Big subject! See the Hadoop whitepapers

• http://hadoop.apache.org/core/docs/current/hdfs_design.html

• The filesystem keeps all namespace information persisted in a journal and
merges the journal once every hr or 64MB.

• All operations that do not alter namespace are guaranteed to be RAM-
only.

• Benchmarked at 50k ops / sec for reads, 5k ops / sec for writes.

• Central metadata trivial to back up - very important!

• HDFS is regarded as optimized for sequential reads, but does well for
random reads (which is HEP’s most frequent operation).

• Block decomposition of files removes hot-spots.

HDFS Design Diagram

Image courtesy of Hadoop website

Hadoop Visualization

HDFS Replication

• Replication built into core of system.

• Default replication policy:

• First replica to local datanode

• Second replica to a node on a different
rack

• Third replica to yet another rack.

Replication Example
• Our current policy is that any node that does not

have a heartbeat in 10 minutes is declared dead.

• At that point, namenode will start creating new
replicas, assuming the node is dead.

• Example below: 1.5TB HDD failed; “danger zone”
passed in ~ 1 hr.

Replication

• At no point when a HDD fails does a client
fail!

HDFS Replication

• HDFS replication allows client’s reads to
survive:

• Death of datanode currently reading
from.

• Death of namenode.

Grid-Enabling HDFS

• We combine HDFS with two grid
components:

• BestMan SRM server

• Globus Gridftp

• Both are well maintained & modular.

• And then we mount it on our WN for local
file access.

HDFS SE Diagram

Extending Hadoop

• Because it has Java, C, and POSIX
interfaces, it is easy to adopt HDFS to
other protocols.

• Using FUSE: SRM, HTTPS (with Apache)

• Using C interfaces: GridFTP, Xrootd

• Using Java interfaces: FDT (upcoming)

• Lesson: Good, stable APIs are more
important than a specific protocol.

Xrootd/HDFS

• Get to benefit from all the nice, HEP-
desired features Xrootd provides.

• Especially nice for “close” interactive access
(maybe another campus accessing your
cluster)

User Xrootd
Daemon

Storage
Plugin HDFS Cluster

Advantages of HDFS

• In order, these are the primary drivers of
our use of HDFS:

• Manageability

• Reliability

• Usability

• Scalability

Manageability

• The following tasks are trivial:
• Integration of statistics with Ganglia.
• Decommissioning hardware.
• Recovery from hardware failure.
• Fsck!

• Checks the current knowledge of the filesystem and counts
how many block replicas there are per file, and highlights any
which are under-replicated.

• RPM and Pacman-based install for the whole kit
(including Grid components).

• Many of our “well-known” problems are not possible.
• Donʼt need a separate admin toolkit! (one gremlin)

• Setting quotas.
• Backups.
• Balancer is included.

FSCK example

FSCK Demo

• (SSH access permitting: demo of using ‘fsck’
utility on our live cluster)

Decommissioning
Procedure

• To remove a node:

• Add it to the hosts_exclude list.

• Instruct HDFS to reload the list.

• Verify the node is listed as
“Decommissioning in Progress” on the
webpage.

• When done, node will be placed on the
“dead list”.

Decommissioning
Demo

• (SSH access permitting: demonstration of
removing a node from the cluster)

Backup Procedure

• To have automated backups created:

• Edit /etc/sysconfig/hadoop to reflect the
name of the backup server.

• Start the daemon.

• (Extra credit). ‘scp’ generated
checkpoints offsite

Ganglia Graphs

Reliability

• Replication works incredibly well.

• Client (CMSSW) reads live through
restarts of any piece of HDFS.

• Writes are pipelined; guaranteed to have N
copies on cluster when close() returns.

• Each datanode does a constant background
checksum of all data & upon reads.

Checksums

• Can configure the cluster to checksum all
data on all nodes every X days (default:
X=14)

• Whenever a client reads data, the default is
for it to compute checksums every Y KB
(default=.5) and compare it against the
datanode’s record.

Usability

• POSIX works*; this opens a lot of doors to
communities who are put off by recompiling
their software.

• * = writes are append-only

• Users no longer have to know about your
FS-specific tools.

• Although there are some nifty additions
the tools provide.

(CMSSW) Performance

TB moved / day

!"!#

$!"!#

%!"!#

&!"!#

'!"!#

(!"!#

)!"!#

*!"!#

+!"!#

,!"!#

'-'-!,# '-$$-!,# '-$+-!,# '-%(-!,# (-%-!,# (-,-!,# (-$)-!,# (-%&-!,#

!
"
#!
$%
&
'(
)
$$
)
*
#

+%,)#

+%-./#0+12#!$%&'()$'#%,#3)4$%'5%#

./0123#

42563#

Namenode Ops

I/O Ops per Second

Performance Stats
• We’ve clocked:

• The filesystem at 80Gbps.

• 23 Gbps for 300 CMSSW processes analyzing a single file
@ 2 replicas (we picked a fake workflow to pump up the
per-job rate).

• SRM endpoints at ~50Hz (these SRMs are stateless; load-
balancing is trivial). Done using GUMS auth.

• fsck takes <10s.

• Decommissioning a pool <1hr.

• Namenode restart in about 60s.

• WAN transfers peak at 9Gbps, sustain 5Gbps.

• 18,400 metadata ops / sec from the namenode.

Hadoop Pros vs Cons

• Pros:

• Very good reliability

• Very good manageability

• Designed for commodity hardware
(and you own commodity hardware)

• Cons:

• New filesystem for HEP

• Designed for commodity hardware
(and you own high-end hardware)

Upcoming Work

• Upgrade to 0.20.0.

• Integration with Yahoo! and Cloudera
builds.

• Battle-hardening RPMs for GridFTP &
BestMan.

• “Settling in”: getting a golden version for
WLCG.

Conclusions

• Hadoop gives us significant improvements in
manageability of storage => lowers cost of
maintenance.

• Performance scalability benefits by co-locating
storage and WNs

• Reliability during disk failures => less failures
seen by users.

• Allows us to use commodity hardware =>
lowers cost of hardware.

