Emerging lechnologies:
Hadoop

Brian Bockelman
OSG Storage ‘09

Introducing Hadoop

® Hadoop is a data processing system that
follows the MapReduce paradigm for
scalable data analysis.

® |argest install is at Yahoo, a major
contributor.

® |4PB of online disk.

® |arger clusters are planned

Hadoop and HDFS

® Jo do large-scale data processing, you need
an underlying file system.

® But to do this affordably, you need a

distributed FS designed for commodity
hardware.

® |.e., stuff all your worker nodes full of
disks.

HDFS

® HDFS is a scalable file system with two
major components:

® Namenode: central metadata server.
® Datanode: file servers for data.

® | ots of design decisions in HDFS will look
familiar to WLCG sites.

HDFS Design

® Big subject! See the Hadoop whitepapers
® http://hadoop.apache.org/core/docs/current/hdfs design.html

® The filesystem keeps all namespace information persisted in a journal and
merges the journal once every hr or 64MB.

® All operations that do not alter namespace are guaranteed to be RAM-
only.

® Benchmarked at 50k ops / sec for reads, 5k ops / sec for writes.
® (Central metadata trivial to back up - very important!

® HDFS is regarded as optimized for sequential reads, but does well for
random reads (which is HEP’s most frequent operation).

® Block decomposition of files removes hot-spots.

HDFS Architecture

Metadata (Name, replicas, ...):

Metadat{aﬁgpsﬁ{ Namenode /home/foo/data, 3, ...

Read Datanodes

\

\

Block ops

Datanodes

| A

Replication

Wrrite

Client

Image courtesy of Hadoop website

oop Visualization

HDFS Replication

® Replication built into core of system.
® Default replication policy:
® First replica to local datanode

® Second replica to a node on a different
rack

® Third replica to yet another rack.

Replication Example

® Our current policy is that any node that does not
have a heartbeat in 10 minutes is declared dead.

® At that point, namenode will start creating new
replicas, assuming the node is dead.

® Example below: |.5TB HDD failed; “danger zone”
passed in ~ | hr.

dfs. FSNamesystem.UnderReplicatedBlocks

- -
30 k
20 k |

10 k |

B hadoop-name last day (now 0.00)

Replication

® At no point when a HDD fails does a client
fail!

HDFS Replication

® HDFS replication allows client’s reads to
survive:

® Death of datanode currently reading
from.

® Death of namenode.

Grid-Enabling HDFS

® We combine HDFS with two grid
components:

® BestMan SRM server

® Globus Gridftp

® Both are well maintained & modular.

® And then we mount it on our VWN for local
file access.

HDFS SE Diagram

GridFTP Node

Globus GridFTP

DSI callout

Worker Node 1

IPOSIX I/O

FUSE filesystem

'

Datanode

HDES C Bindings/Data

Hadoop Client

HDEFES C bindings

SREM Node

BeStMan SRM

/}ata X DataNh{etadata /Metadata

rker z&nde 2

Namenode

enode’machine

Metadata

HDFS Grid Site

Extending Hadoop

® Because it has Java, C,and POSIX

interfaces, it is easy to adopt HDFS to
other protocols.

® Using FUSE: SRM, HTTPS (with Apache)
® Using C interfaces: GridFTP, Xrootd

® Using Java interfaces: FDT (upcoming)

® |Lesson: Good, stable APls are more
important than a specific protocol.

Xrootd/HDFS

® Get to benefit from all the nice, HEP-
desired features Xrootd provides.

® Especially nice for “close” interactive access

(maybe another campus accessing your
cluster)

m Xrootd

Daemon

Storage
Plugin HDEFES Cluster

Advantages of HDFS

® |n order, these are the primary drivers of
our use of HDFS:

Manageability
Reliability
Usability
Scalability

Manageability

e The following tasks are trivial:
Integration of statistics with Ganglia.
Decommissioning hardware.

Recovery from hardware failure.

Fsck!

e (Checks the current knowledge of the filesystem and counts
how many block replicas there are per file, and highlights any
which are under-replicated.

RPM and Pacman-based install for the whole kit
(including Grid components).

Many of our “well-known” problems are not possible.

¢ Don’t need a separate admin toolkit! (one gremilin)

Setting quotas.

Backups.

Balancer is included.

FSCK example

root@hadoop-name:~ — ssh — 107x33

Total size: 72767054047268 B

Total dirs: 2271

Total files: 59765 (Files currently being written: 1)
Total blocks (validated): 1253128 (avg. block size 69226115 B)
Minimally replicated blocks: 1253128 (122.92 %)
Over-replicated blocks: 3778 (@.3587428 %)
Under-replicated blocks: 2 (2.2 %)

Mis-replicated blocks: 2 (2.2 %)

Default replication factor: 3

Average block replication: 2.2923886

Corrupt blocks: ?

Missing replicas: 2 (2.2 %)

Number of data-nodes: 113

Number of racks: 1

The filesystem under path /' 1s HEALTHY

real @m7.753s
user 2m2.835s
Sys 2m2.159s
[root®hadoop-name ~]# [}

FSCK Demo

® (SSH access permitting: demo of using ‘fsck’
utility on our live cluster)

Decommissioning
Procedure

® Jo remove a node:
Add it to the hosts exclude list.
Instruct HDFS to reload the list.

Verify the node is listed as
“Decommissioning in Progress” on the
webpage.

When done, node will be placed on the
“dead list”.

Decommissioning
Demo

® (SSH access permitting: demonstration of
removing a node from the cluster)

Backup Procedure

® Jo have automated backups created:

e Edit /etc/sysconfig/lhadoop to reflect the
name of the backup server.

® Start the daemon.

® (Extra credit). ‘scp’ generated
checkpoints offsite

Ganglia Graphs

Ganglia:: nodel86 Host Report

‘funl.edu/ganglia/fr=dayfc=red-workers&h=nodel86

i/ /nmi-s005.cs.wi...| % [#HADOOP-4343] Add...

[E5] WLCG Collaboration W... |

2 Results of Query: Job ... | () Ganglia:: nodel86 Ho... |

o Compul

Fri 12:6a@

B nodelEs last day (now 0,00}

Sat 0600

dfs.datanode.reads _from local client

1.2 M

1.0 M
Fri 12:0@

B nodelEs last day

Sat 0000

(now 1,173,960)

dfs.datanode. replaceBlockOp_avg_ time

l.e§

EINE

Fri 12:60@

B nodelEc last day (now ©.00)

Sat 0O0: 00

dfs.datanode.writeBlockOp avg_ time

-

3.0 k
2.0 k
1.0 k

EINE I
Fri 12:6a@

B nodelEs last day

(now 0,00}

Sat 0600

Fri 12:@ad
B nodel&c last day

Sat ©0:00
(now 0,00}

dfs.datanode.reads from remote client
80 M

Ta M
Fri 12:@0

B nodeld: last day

Sat 0000
(now TG,286,298)

dfs.datanode. replaceBlockOp_num_ops
0k

1.0 k
Fri 12:00

B nodel&t last day

Sat 0000
(now 4,917

dfs.datanode.writeBlockOp _num_ops
200 k

120 k
168 k
143 k

Fri 12:@ad
B nodel&c last day

Sat 00:00
(now 135,664)

Reliability

® Replication works incredibly well.

® Client (CMSSW) reads live through
restarts of any piece of HDFS.

® Writes are pipelined; guaranteed to have N
copies on cluster when close() returns.

® Fach datanode does a constant background
checksum of all data & upon reads.

Checksums

® Can configure the cluster to checksum all

data on all nodes every X days (default:
X=14)

® Whenever a client reads data, the default is
for it to compute checksums every Y KB
(default=.5) and compare it against the
datanode’s record.

Usability

® POSIX works™; this opens a lot of doors to
communities who are put off by recompiling
their software.

® * = writes are append-only

® Users no longer have to know about your
FS-specific tools.

® Although there are some nifty additions
the tools provide.

(CMSSW) Performance

red Cluster Network last day

Bytes/sec

Thu 16: 00 Thu 20:00

Thu 00: 00 Thu O4:00 Thu 08:00 Thu 12:00

TB moved / day

TB Trasferged &
o O o

N
o
o

=
o
o

0.0

Daily HDFS Transfers at Nebraska

Writes

II Reads

4/4/09 4/11/09 4/18/09 4/25/09 5/2/09 5/9/09 5/16/09 5/23/09
Date

amenode Ops

Hadoop Namenode Operation Count
28860 Seconds from 2009-04-15 00:00 to 2009-04-15 08:01 UTC
|} L) L)]]

=tReplication [| listStatus) create
"I mkdirs

Maximum: 20,312 , Minimum: 291.00 | Average: 4,142 | Current: 419.00

/O Ops per Second

Hadoop Datanode Operation Count Per Minute

86400 Seconds from 2009-04-29 00:00 to 2009-04-30 00:00 UTC
L v L v L v L v v

1,000,000

800,000

600,000

200,000

0
00:00 02:00 04:00 06:00 08:00 10:00 :00 14:00 16:00 18:00 20:00 22:00

i HDFS_READ

Maximum: 1,188,022 |, Minimum: 71,894 | Average: 344,282 , Current: L66,888

Performance Stats

® \We've clocked:

The filesystem at 80Gbps.

23 Gbps for 300 CMSSW processes analyzing a single file

@ 2 replicas (we picked a fake workflow to pump up the
per-job rate).

SRM endpoints at ~50Hz (these SRMs are stateless; load-
balancing is trivial). Done using GUMS auth.

fsck takes <10s.
Decommissioning a pool <lhr.

Namenode restart in about 60s.

WAN transfers peak at 9Gbps, sustain 5Gbps.

18,400 metadata ops / sec from the namenode.

Hadoop Pros vs Cons

® Pros:
® Very good reliability
® Very good manageability

® Designed for commodity hardware
(and you own commodity hardware)

® Cons:
® New filesystem for HEP

® Designed for commodity hardware
(and you own high-end hardware)

Upcoming Work

® Upgrade to 0.20.0.

® |ntegration with Yahoo! and Cloudera
builds.

® Battle-hardening RPMs for GridFTP &
BestMan.

® “Settling in": getting a golden version for
WLCG.

Conclusions

® Hadoop gives us significant improvements in
manageability of storage => lowers cost of
maintenance.

® Performance scalability benefits by co-locating
storage and VWNs

® Reliability during disk failures => less failures
seen by users.

® Allows us to use commodity hardware =>
lowers cost of hardware.

