Perspectives on Nuclear Physics Input into High-Energy Cosmic Ray Interactions

A.B. Balantekin

University of Wisconsin-Madison

XVI International Symposium on Very High Energy Cosmic Ray Interactions, Fermilab, June 2010

Disclaimer: My expertise in nuclear collisions is mostly at low energies; my expertise in high energies is mostly with neutrinos. So this is essentially an outsider's perspective!

Net Baryon Density

¹ Nuclei

relevant to the cosmic-ray physics? Recent results suggest presence of a significant nuclear component in the higher-energy cosmic-ray flux from the measurements of the depth of the shower maximum

Recent results suggest presence of a significant nuclear component in the higher-energy cosmic-ray flux from the measurements of the depth of the shower maximum

AUGER Collaboration, PRL 104, 091101 (2010)

CAUTION: Heitler's original formula:

$$\langle X_{max} \rangle = \alpha (ln E - \langle ln A \rangle) + \beta$$

assumes that heavier nuclei are basically superposition of the nucleons

(see however Ulrich et al., arXiv:0906.0418)

Are nuclear collisions simply a superposition of nucleon collisions?

$$R_{AA} = \frac{dN_{AA}/dp_T}{N_{\text{coll}} \left(dN_{pp}/dp_T \right)}$$

N_{coll} = number of binary collisions

Absence of nuclear medium interactions (i.e. $\gamma's$) $\Rightarrow R_{AA} \approx 1$

Energy loss in the medium \Rightarrow reduction of p_T

PRL 96, 202301 (2006)

QCD jets are quenched by the nuclear medium. Nuclear collisions are NOT simply a superposition of pp collisions!

Glauber formula

$$\sigma_{AA} = \int d^2b \left(1 - \exp\left[-\sigma_{pA} \int \rho_A(b) dz \right] \right)$$

Glauber formula and its extensions represent multiple scatterings in the target, but do not take into account the emergent properties of the quark-gluon system for which there are strong experimental hints.

Recent results suggest presence of a significant nuclear component in the higher-energy cosmic-ray flux from the measurements of the depth of the shower maximum

What have we recently learned from relativistic heavy-ion experiments?

- An effective "temperature" in 200 GeV Au-Au collisions has been measured. Result is not exactly what we expected.
- 2 Negative Binomial Distributions continue to fit the data well. ••
- There are strong experimental indications that the quark-gluon system formed in relativistic heavy-ion collisions is not a gas, but *almost* a perfect liquid.

Measuring the "temperature" at $\sqrt{s_{NN}} \sim 200 \ GeV$ Au-Au collisions

First measure opposite-charge lepton pairs

PRL **104**, 132301 (2010)

...then convert to real photons by going to zero invariant mass

 T_{eff} = 221±19±19 MeV (effective because γ 's are emitted as the temperature evolves)

theoretical input

300 MeV < T_{initial} < 600 MeV

as opposed to the QCD prediction of ~ 170 MeV!

Negative Binomial Distribution continues to fit multiplicity fluctuations well

PHENIX Collaboration, PRC 78, 044902 (2008)

Negative Binomial Distribution continues to fit multiplicity fluctuations well

Negative Binomial Distribution

Basic assumption: Probability of emitting n particles by the ith source is b_i^n .

$$\Rightarrow F(\lambda) = \sum_{n=0}^{\infty} P_n \lambda^n = \prod_{i=1}^{k_{NBD}} \frac{1 - b_i}{1 - \lambda b_i}$$

All b_i 's are the same \Rightarrow Negative Binomial Distribution:

$$\sum_{n=0}^{\infty} P_n \lambda^n = \left(\frac{1-b}{1-\lambda b}\right)^{k_{NBD}}$$

Note: In fits k_{NBD} is not constrained to be an integer.

Note: P_n is the complete symmetric function of degree n in the arguments b_i . The ubiquity of negative binomial distribution is likely to be statistical.

What is a perfect fluid?

"good" fluid \Rightarrow low viscosity, η

Is there a lower bound on shear viscosity, η ? - Heuristic argument

$$F_{x} = \eta A \frac{\partial v_{x}}{\partial y}$$

For a dilute (weakly-interacting) gas of quasi-particles:

$$\eta = \frac{1}{3} n \langle p \rangle L_{\text{mean}},$$

n: density, $\langle p \rangle$: ave. momentum, $L_{\rm mean} = 1/n\sigma$: mean free path Uncertainty principle:

$$\langle p \rangle L_{\text{mean}} \geq \hbar \quad \Rightarrow \quad \frac{\eta}{n} \geq \hbar$$

Danielewicz & Gyulassy, 1985

Relativistic fluids

For relativistic fluids it is more appropriate to normalize the viscosity to the entropy density

Entropy: $S \propto k_B N$; Entropy density: $s = \frac{S}{V} \propto k_B n$

Is there a lower limit to $\frac{\eta}{s}k_B$?

Kovtun, Son, Starinets, 2005

AdS/CFT duality

 $\begin{array}{c} \mathrm{Large~N~conformal} \\ \mathrm{field~theory~in~4D} & \Longleftrightarrow \begin{array}{c} \mathsf{String~theory~on~5D} \\ \mathsf{Anti~deSitter~space} \times S_5 \end{array} \end{array}$

Thermal CFT ← AdS₅ Black Hole

CFT entropy \iff Hawking entropy of the black hole

Shear viscosity $\iff \sigma_{\text{graviton absorption}}$

Then one can calculate the viscosity in the strong coupling limit:

$$\frac{\eta}{s} = \frac{1}{4\pi} \frac{\hbar}{k_B}$$

Policastro, Son, Starinets, 2001

Hydrodynamic behavior of the quark-gluon system

Hydrodynamic evolution:

 $\begin{array}{l} \text{Initial state pressure} \\ \text{gradient} \end{array} \Rightarrow \begin{array}{l} \text{Final state velocity} \\ \text{gradient} \end{array}$

$$\frac{dN_i}{p_T dp_T dy d\phi_p}(b) = \frac{1}{2\pi} \frac{dN_i}{p_T dp_T dy}(b) \left(1 + 2\sum_i \nu_n^i \cos(n\phi_p)\right)$$

 ϕ_p : azimuthal emission angle relative to the reaction plane

midrapidity, y=0
$$\Rightarrow \nu_{n=\mathrm{odd}} = 0$$

$$|\nu_2>0|\Rightarrow$$
 elliptic flow

The larger the shear velocity, η , is the more transverse expansion of the system slows down.

Concluding remarks

- At higher energies nuclei are not simply a "collection" of nucleons. Much interesting physics comes into play!
- Recent relativistic heavy-ion experiments found a broad spectrum of interesting phenomena, ranging from the observation of the quark-gluon system as a "perfect fluid" to measuring its temperature.
- Some of the recent cosmic ray experiments suggest an increase in the nuclear component of the cosmic-ray flux at higher energies. Insight gained from recent relativistic heavy-ion experiments could help to understand this nuclear component.