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We present evidence for the saturation of the Froissart bound at high energy for all hadronic total
cross sections at high energies, and use this to unify pp (and p̄p) total cross sections over the energy
range from cyclotrons to colliders to ultra-high energy cosmic rays, an energy span from

√
s = 4

GeV to 80 TeV.

Introduction. High energy cross sections for the scat-
tering of hadrons should be bounded by σ ∼ ln2 s, where
s is the square of the cms energy. This fundamental re-
sult is derived from unitarity and analyticity by Froissart
[1], who states:

“At forward or backward angles, the modulus of the
amplitude behaves at most like s ln2 s, as s goes to infin-
ity. We can use the optical theorem to derive that the
total cross sections behave at most like ln2 s, as s goes to
infinity”.

In this context, saturating the Froissart bound refers
to an energy dependence of the total cross section rising
no more rapidly than ln2 s.

It will be shown that the Froissart bound is saturated
at high energies in γp, π±p and p̄p and pp scattering
[2], as well as in γ∗p scattering [3], as seen from Deep
Inelastic Scattering (DIS) in e + p → e + X.

Using Finite Energy Sum Rules (FESR) derived from
analyticity constraints—in order to anchor accurately
cross sections at cyclotron energies [4]—we will make
precise predictions about the total pp cross section, the
ρ-value (the ratio of the real to the imaginary portion
of the forward pp scattering amplitude), as well as the
shape of the differential elastic scattering cross section,
dσrmeel/dt, at the LHC. Further, we will make predic-
tions of the total pp cross section at cosmic ray energies,
up to 50 TeV, and will compare them to the latest ex-
periments.

Data selection. We make the following major assump-
tions about the experimental data that we fit:

1. The experimental data can be fitted by a model
which successfully describes the data.

2. The signal data are Gaussianly distributed, with
Gaussian errors.

3. The noise data consists only of points “far away”
from the true signal, i.e., “outliers” only.

4. The outliers do not completely swamp the signal
data.

We will use the “Sieve” algorithm [5] to remove “out-
liers” in the cross section and ρ-values that we will fit, in
order to improve the accuracy of our fits. The “Sieve”
Algorithm does the following:

1. Make a robust fit of all of the data (presumed
outliers and all) by minimizing Λ2

0, the Lorentzian
squared, defined as

Λ2
0(α; x) ≡

N
∑

i=1

ln
{

1 + 0.179∆χ2
i (xi; α)

}

,

where ∆χ2
i (xi; α) ≡

(

yi − y(xi; α)

σi

)2

. (1)

The M -dimensional parameter space of the fit is
given by α = {α1, . . . , αM}; x = {x1, . . . , xN} is
the abscissa of the N experimental measurements
y = {y1, . . . , yN} that are being fit; y(xi; α) is
the theoretical value at xi and σi is the experi-
mental error. Minimizing Λ2

0 gives the same total

χ2
min ≡ ∑N

i=1 ∆χ2
i (xi; α) as that found in a χ2 fit,

as well as rms widths (errors) for the parameters—
for Gaussianly distributed data—that are almost
the same as those found in a χ2 fit. The quanti-
tative measure of “far away” from the true signal,
i.e., point i is an outlier, is the magnitude of its

∆χ2
i (xi; α) =

(

yi−y(xi;α)
σi

)2

.

If χ2
min is satisfactory, make a conventional χ2 fit

to get the errors and you are finished. If χ2
min is

not satisfactory, proceed to step 2.

2. Using the above robust Λ2
0 fit as the initial estima-

tor for the theoretical curve, evaluate ∆χ2
i (xi; α),

for each of the N experimental points.

3. A largest cut, ∆χ2
i (xi; α)max, must now be se-

lected. For example, we might start the process
with ∆χ2

i (xi; α)max = 9. If any of the points
have ∆χ2

i (xi; α) > ∆χ2
i (xi; α)max, reject them—

they fell through the “Sieve”. The choice of
∆χ2

i (xi; α)max is an attempt to pick the largest
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“Sieve” size (largest ∆χ2
i (xi; α)max) that rejects all

of the outliers, while minimizing the number of sig-
nal points rejected.

4. Next, make a conventional χ2 fit to the sifted set—
these data points are the ones that have been re-
tained in the “Sieve”. This fit is used to esti-
mate χ2

min. Since the data set has been trun-
cated by eliminating the points with ∆χ2

i (xi; α) >
∆χ2

i (xi; α)max, we must slightly renormalize the
χ2

min found to account for this, by the factor
R=1.027, 1.14, 1.291 for ∆χ2

i max = 9, 6, 4. If the
renormalized χ2

min, i.e., R × χ2
min is acceptable—

in the conventional sense, using the χ2 distribution
probability function—we consider the fit of the data
to the model to be satisfactory and proceed to the
next step. If the renormalized χ2

min is not accept-
able and ∆χ2

i (xi; α)max is not too small, we pick a
smaller ∆χ2

i (xi; α)max and go back to step 3. The
smallest value of ∆χ2

i (xi; α)max that makes much
sense, in our opinion, is ∆χ2

i (xi; α)max > 2. One of
our primary assumptions is that the noise doesn’t
swamp the signal. If it does, then we must dis-
card the model—we can do nothing further with
this model and data set!

5. From the χ2 fit that was made to the “sifted” data
in the preceding step, evaluate the parameters α.
Next, evaluate the M × M covariance (squared er-
ror) matrix of the parameter space found in the χ2

fit. We find the renormalized squared error ma-
trix of our χ2 fit by multiplying the covariance ma-
trix by the square of the factor rχ2 (we find rχ2 ∼
1.02, 1.05, 1.11 and 1.14 for ∆χ2

i (xi; α)max = 9, 6,
4 and 2). The values of rχ2 > 1 reflect the fact
that a χ2 fit to the truncated Gaussian distribution
that we obtain has a rms (root mean square) width
which is somewhat greater than the rms width of
the χ2 fit to the same untruncated distribution. Ex-
tensive computer simulations demonstrate that this
robust method of error estimation yields accurate
error estimates and error correlations, even in the
presence of large backgrounds.

You are now finished. The initial robust Λ2
0 fit has been

used to allow the phenomenologist to find a sifted data
set. The subsequent application of a χ2 fit to the sifted
set gives stable estimates of the model parameters α, as
well as a goodness-of-fit of the data to the model when
χ2

min is renormalized for the effect of truncation due to
the cut ∆χ2

i (xi; α)max. Model parameter errors are found
when the covariance (squared error) matrix of the χ2 fit
is multiplied by the appropriate factor (rχ2)2 for the cut
∆χ2

i (xi; α)max.

Analyticity constraints on hadronic cross sections.
Block and Cahn [7] used an even real analytic amplitude

f̃+(ν) given by

Im f̃+(ν) =
p

4π

[

c0 + c1 ln
( ν

m

)

+ c2 ln2
( ν

m

)

+ βP′

( ν

m

)µ−1
]

for ν ≥ m,

Im f̃+(ν) = 0 for 0 ≤ ν ≤ m, (2)

Re f̃+(ν) =
p

4π

[π

2
c1 + c2π ln

( ν

m

)

− βP′ cot
(πµ

2

) ( ν

m

)µ−1
]

, (3)

where ν is the nucleon (pion) laboratory energy and m
is the proton mass. Using the optical theorem, the even
cross section is

σ̃+(ν) = c0 + c1 ln(ν/m) + c2 ln2(ν/m) + βP′ (ν/m)µ−1,
(4)

where here the coefficients c0, c1, c2 and βP′ have di-
mensions of mb. Since ν

m
= s

2m2 for ν � m, i.e., for
the high energy regime in which we are working, we will
henceforth refer to equations similar to that of Eq. (4) as
ln2 s fits if c2 6= 0 and as ln s fits if c2 = 0.

We now introduce f+(ν), the true even forward scatter-
ing amplitude (which of course, we do not know!), valid
for all ν , where f+(ν) ≡ [fpp(ν)+fp̄p(ν)]/2, using forward
scattering amplitudes for pp and p̄p collisions. Using the
optical theorem, the imaginary portion of f+(ν) is related
to the even total cross section σeven(ν) by

Im f+(ν) =
p

4π
σeven(ν) for ν ≥ m. (5)

Next, define the odd amplitude νf̂+(ν) as the differ-
ence

νf̂+(ν) ≡ ν
[

f+(ν) − f̃+(ν)
]

, (6)

which satisfies the unsubtracted odd amplitude disper-
sion relation

Reνf̂+(ν) =
2ν

π

∫ ∞

0

Im ν ′f̂+(ν ′)

ν ′2 − ν2
dν ′. (7)

Since for large ν , the odd amplitude νf̂+(ν) ∼ να (α < 0)
by design, it also satisfies the super-convergence relation

∫ ∞

0

Im νf̂+(ν) dν = 0. (8)

In Ref. [8], the FESRs are given by

∫ ν0

0

νn Imf̂ dν =
∑ ν0

α+n+1

α + n + 1
, n = 0, 1, . . . ,∞, (9)

where f̂(ν) is crossing-even for odd integer n and
crossing-odd for even integer n. In analogy to the n = 1
FESR of Ref.. [8], which requires the odd amplitude
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νf̂(ν), Igi and Ishida inserted the super-convergent am-
plitude of Eq. (6) into the super-convergent dispersion
relation of Eq. (8), obtaining

∫ ∞

0

ν Im
[

f+(ν) − f̃+(ν)
]

dν. (10)

We note that the odd difference amplitude νIm f̂+(ν) sat-
isfies Eq. (8), a super-convergent dispersion relation, even
if neither ν Im f+(ν) nor ν Im f̃+(ν) satisfies it. Since

the integrand of Eq. (10), ν Im
[

f+(ν) − f̃+(ν)
]

, is super-

convergent, we can truncate the upper limit of the inte-
gration at the finite energy ν0, an energy high enough
for resonance behavior to vanish and where the differ-
ence between the two amplitudes—the true amplitude
f+(ν) minus f̃+(ν), the amplitude which parametrizes
the high energy behavior—becomes negligible, so that
the integrand can be neglected for energies greater than
ν0. Thus, after some rearrangement, we get the even
finite energy sum rule (FESR)

∫ ν0

0

νImf+(ν) dν =

∫ ν0

0

νIm f̃+(ν) dν. (11)

Next, the left-hand integral of Eq. (11) is broken up
into two parts, an integral from 0 to m (the ‘unphysi-
cal’ region) and the integral from m to ν0, the physical
region. We use the optical theorem to evaluate the left-
hand integrand for ν ≥ m. After noting that the imagi-
nary portion of f̃+(ν) = 0 for 0 ≤ ν ≤ m, we again use
the optical theorem to evaluate the right-hand integrand,
finally obtaining the finite energy sum rule FESR(2) of
Igi and Ishida [6], in the form:

∫ m

0

ν Im f+(ν) dν +
1

4π

∫ ν0

m

νp σeven(ν) dν =

1

4π

∫ ν0

m

νp σ̃+(ν) dν. (12)

We now enlarge on the consequences of Eq. (12). We
note that if Eq. (12) is valid at the upper limit ν0, it
certainly is also valid at ν0 + ∆ν0, where ∆ν0 is very
small compared to ν0, i.e., 0 ≤ ∆ν0 � ν0. Evaluating
Eq. (12) at the energy ν0 + ∆ν0 and then subtracting
Eq. (12) evaluated at ν0, we find

1

4π

∫ ν0+∆ν0

ν0

νp σeven(ν) dν =
1

4π

∫ ν0+∆ν0

ν0

νpσ̃+(ν) dν. (13)

Clearly, in the limit of ∆ν0 → 0, Eq. (13) goes into

σeven(ν0) = σ̃+(ν0). (14)

Obviously, Eq. (14) also implies that

σeven(ν) = σ̃+(ν) for all ν ≥ ν0, (15)

but is most useful in practice when ν0 is as low as possi-
ble. The utility of Eq. (15) becomes evident when we rec-
ognize that the left-hand side of it can be evaluated using
the very accurate low energy experimental crossing-even
total cross section data, whereas the right-hand side can
use the phenomenologist’s parameterization of the high
energy cross section. For example, we could use the cross
section parameterization of Eq. (4) on the right-hand side
of Eq. (15) and write the constraint

[σpp(ν) + σp̄p(ν)] /2 = c0 + c1 ln(ν/m) + c2 ln2(ν/m)

+βP′ (ν/m)µ−1, (16)

where σpp and σp̄p(ν) are the experimental pp and p̄p
cross sections at the laboratory energy ν . Equation (14)
(or Eq. (15)) is our first important extension, giving us an
analyticity constraint, a consistency condition that the
even high energy (asymptotic) amplitude must satisfy.

Reiterating, Eq. (15) is a consistency condition im-
posed by analyticity that states that we must fix the even
high energy cross section evaluated at energy ν ≥ ν0 (us-
ing the asymptotic even amplitude) to the low energy
experimental even cross section at the same energy ν ,
where ν0 is an energy just above the resonances. Clearly,
Eq. (14) also implies that all derivatives of the total cross
sections match, as well as the cross sections themselves,
i.e.,

dnσeven

dνn
(ν) =

dnσ̃+

dνn
(ν), n = 0, 1, 2, . . . ν ≥ ν0,(17)

giving new even amplitude analyticity constraints. Of
course, the evaluation of Eq. (17) for n = 0 and n =
1 is effectively the same as evaluating Eq. (17) for n =
0 at two nearby values, ν0 and ν1 > ν0. It is up to
the phenomenologist to decide which experimental set of
quantities it is easier to evaluate.

We emphasize that these consistency constraints are
the consequences of imposing analyticity, implying sev-
eral important conditions:

1. The new constraints that are derived here tie to-
gether both the even hh and h̄h experimental cross
sections and their derivatives to the even high en-
ergy approximation that is used to fit data at en-
ergies well above the resonance region. Analyticity
then requires that there should be a good fit to the
high energy data after using these constraints, i.e.,
the χ2 per degree of freedom of the constrained fit
should be ∼ 1, if the high energy asymptotic am-
plitude is a good approximation to the high energy
data. This is our consistency condition demanded
by analyticity. If, on the other hand, the high
energy asymptotic amplitude would have given a
somewhat poorer fit to the data when not using the
new constraints, the effect is tremendously magni-
fied by utilizing these new constraints, yielding a
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very large χ2 per degree of freedom. As an exam-
ple, both Block and Halzen [2] and Igi and Ishida
[6] conclusively rule out a ln s fit to both π±p and
pp and p̄p cross sections and ρ-values because it has
a huge χ2 per degree of freedom.

2. Consistency with analyticity requires that the re-
sults be valid for all ν ≥ ν0, so that the constraint
doesn’t depend on the particular choice of ν .

3. The non-physical integral
∫ m

0 ν Im f+(ν) dν is not
needed for our new constraints. Thus, the value of
non-physical integrals, even if very large, does not
affect our new constraints.

Having restricted ourselves so far to even amplitudes,
let us now consider odd amplitudes. It is straightforward
to show for odd amplitudes that FESR(odd) implies that

dnσodd

dνn
(ν)=

dnσ̃−

dνn
(ν), n = 0, 1, 2, . . . , ν ≥ ν0, (18)

where σ̃−(ν) is the odd (under crossing) high energy cross
section approximation and σodd(ν) is the experimental
odd cross section.

Thus, we have now derived new analyticity constraints
for both even and odd cross sections, allowing us to con-
strain both hh and h̄h scattering. Block and Halzen [2]
expanded upon these ideas, using linear combinations of
cross sections and derivatives to anchor both even and
odd cross sections. A total of 4 constraints, 2 even and
2 odd constraints, were used by them in their successful
ln2 s fit to pp and p̄p cross sections and ρ-values, where
they first did a local fit to pp and p̄p cross sections and
their slopes in the neighborhood of ν0 = 7.59 GeV (cor-
responding to

√
s0 = 4 GeV), to determine the experi-

mental cross sections and their first derivatives at which
they anchored their fit. The data they used in the high
energy fit were pp and p̄p cross sections and ρ-values with
energies

√
s ≥ 6 GeV. Introducing the even cross section

σ0(ν), they parameterized the high energy cross sections
and ρ values [2] as

σ0(ν) = c0 + c1 ln
( ν

m

)

+ c2 ln2
( ν

m

)

+ βP′

( ν

m

)µ−1

, (19)

σ±(ν) = σ0

( ν

m

)

± δ
( ν

m

)α−1

, (20)

ρ±(ν) =
1

σ±

{

π

2
c1 + c2π ln

( ν

m

)

− βP′ cot
(πµ

2

) ( ν

m

)µ−1

+
4π

ν
f+(0) ± δ tan

(πα

2

) ( ν

m

)α−1
}

. (21)

We note that the even coefficients c0, c1, c2 and βP′ are
the same as those used in Eq. (16). The real constant
f+(0) is the subtraction constant [7, 9] required at ν = 0
for a singly-subtracted dispersion relation. They also
used µ = 0.5. The odd cross section in Eq. (20) is given

by δ
(

ν
m

)α−1
, described by two parameters, the coeffi-

cient δ and the Regge power α < 1, so that the difference
cross section between pp and p̄p vanishes at high energies.

We now have new analyticity constraints for both even
and odd amplitudes. The fits are anchored by the exper-
imental cross section data near the transition energy ν0.
These consistency constraints are due to the application
of analyticity to finite energy integrals—the analog of
analyticity giving rise to traditional dispersion relations
when it is applied to integrals with infinite upper limits.

γp, π±p, p̄p and pp scattering. Using the 4 constraints
of the previous Section, we show in Fig. 1 both the ln2 s
fit and the ln s fit of Eq. (19) and Eq. (20) to the exper-
imental π±p total cross sections. The high energy fit is
anchored to the very accurate data a at

√
s = 2.6 GeV.

Because of the 4 constraints, the ln2 s fit needs only to
fit the two parameters c1 and c2, whereas the ln s fit sets
c2 = 0 and fits only c1. We see that the ln2 s fit, which
saturates the Froissart bound, gives an excellent fit to the
data, while the ln s fit is ruled out. Shown in Fig. 2 are
the ρ-values for π±p scattering: again, we see that the
ln s fit is ruled out, whereas we get a good fit when we
saturate the Froissart bound.

In Fig. 3 we compare the results of our fitted πp
cross section σ0 (from Eq. (19)) with a rescaled version
of σ0(γp) that was obtained from a fit to all known high
energy γp cross sections. From about 2 ≤ √

s ≤ 300
GeV, the two saturated ln2 s fits are virtually indistin-
guishable. Thus we conclude that high energy γp total
cross sections also go as ln2 s.

FIG. 1: The fitted total cross sections σπ+p and σπ−p in mb, vs.√
s, in GeV, using 4 constraints. The circles are the sieved data

for π−p scattering and the squares are the sieved data for π+p

scattering for
√

s ≥ 6 GeV. The dash-dotted curve (π+p) and the
solid curve (π−p) are ln2 s fits. The short dashed curve (π+p) and
the long dashed curve (π−p) are ln s fits and clearly do not fit the
data.

We next consider high energy p̄p and pp scattering.
Shown in Fig. 4 are fits to the total cross sections, where
again, for the ln2 s fit, only 2 parameters, c1 and c2 are
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FIG. 2: The fitted ρ-values, ρπ+p and ρπ−p, vs.
√

s, in GeV, using

4 constraints. The circles are the sieved data for π−p scattering
and the squares are the sieved data for π+p scattering for

√
s ≥ 6

GeV. The dash-dotted curve (π+p) and the solid curve (π−p) are
ln2 s fits. The short dashed curve (π+p) and the long dashed curve
(π−p) are ln s fits, which again are bad fits to the experimental
data.

FIG. 3: The circles are the cross section data for π−p scattering
and the squares are the cross section data for π+p scattering, in
mb, vs.

√
s, in GeV, for all of the known data. The dashed curve

is the ln2 s πp fit to the high energy cross section data of the even
amplitude cross section, σ0. The solid curve is the fit of the γp cross
section data , for cms energies

√
s ≥ 2.01 GeV, whereas the πp data

(cross sections and ρ-values) were fit for cms energies
√

s ≥ 6 GeV.
The two fitted curves are virtually indistinguishable in the energy
region 2 ≤ √

s ≤ 300 GeV.

fit, after anchoring the high energy data to the accurate
cyclotron data at

√
s = 4 GeV. Once again, we see that

we have an excellent ln2 s fit to all of the high energy
total cross section data when we anchor our fit (of only
2 parameters!) to the low energy data, whereas the ln s
fit to these data fails. In Fig. 5 we compare the nucleon-
nucleon ρ-values to our 3 parameter fit of c0, c1 and the
subtraction constant f+(0).

Before employing the “Sieve” algorithm on the totality
of 212 high energy p̄p and pp cross sections, the χ2/d.f.
was 5.7 for the ln2 s fit, clearly an unacceptably high

FIG. 4: The fitted total cross sections σpp and σp̄p in mb, vs.
√

s,
in GeV, using 4 constraints. The circles are the sieved data for p̄p

scattering and the squares are the sieved data for pp scattering for√
s ≥ 6 GeV. The dash-dotted curve (pp) and the solid curve (p̄p)

are lns fits to the high energy data. The short dashed curve (pp)
and the long dashed curve (p̄p) are ln s fits to the high energy data.
Clearly, the ln s fits do not fit the experimental data.

FIG. 5: The fitted ρ-values, ρpp and ρp̄p, vs.
√

s, in GeV, using
4 constraints. The circles are the sieved data for p̄p scattering and
the squares are the sieved data for pp scattering for

√
s ≥ 6 GeV.

The dash-dotted curve (pp) and the solid curve (p̄p) are ln2 s fits
The short dashed curve (pp) and the long dashed curve (p̄p) are
ln s fits. Clearly, the ln s fits do not fit the experimental data.

value. After “sieving”, the renormalized χ2/d.f. was
1.09, for 184 degrees of freedom, using a ∆χ2

i > 6 cut.
The total χ2 was 201.4, corresponding to a probability of
fit ≈ 0.2. In all, the 25 rejected points contributed 981 to
the total χ2, i.e., an average ∆χ2 of about 39 per point!

For the LHC , the ln2 s fits shown in Fig. 4 and Fig.
5 predict

σpp = 107.3± 1.2 mb,
√

s = 14 TeV (22)

ρpp = 0.132± 0.001, (23)

where the quoted errors are due to the uncertainties in
the fit parameters.

Deep inelastic scattering (DIS). Berger, Block and Tan
[3] analyzed the x dependence of the DIS proton structure
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functions F p
2 (x, Q2) by beginning with the assumption

that the x dependence at extremely small x should man-
ifest a behavior consistent with saturation of the Froissart
bound on hadronic total cross sections [1], as is satisfied
by data on γp, π±p, and p̄p and pp interactions. They
treated DIS ep scattering as the hadronic reaction γ∗p,
demanding that the total cross section σ(γ∗p) saturate
the Froissart bound of ln2 s. For the process γ∗ +p → X,
the invariant s is given by s = Q2/x, for small x, when
s � m2, where m is the proton mass, x is the fractional
longitudinal momentum of the proton carried by its par-
ton constituents and Q2 is the virtuality of the γ∗. Thus,
saturting the Froissart bound [1] demands that F p

2 (x, Q2)
grow no more rapidly than ln2(1/x) at very small x. Over
the ranges of x and Q2 for which DIS data are avail-
able, they show that a very good fit to the x dependence
of ZEUS data [10] is obtained for x ≤ xP = 0.09 and
Q2

x
� m2 using the expression

F p
2 (x, Q2) = (1 − x)×

{ FP

1− xP

+ A(Q2) ln

[

xP

x

1− x

1 − xP

]

+ B(Q2) ln2

[

xP

x

1 − x

1 − xP

]

}

. (24)

Their fits to DIS data [10] at 24 values of Q2 cover the
wide range 0.11 ≤ Q2 ≤ 1200 GeV2. The value xP =
0.09 is a scaling point such that the curves for all Q2

pass through the point x = xP , at which F2(xP , Q2) =
FP ∼ 0.41, further constraining all of the fits. Figure
6 shows that also in γ∗p scattering, the Froissart bound
appears to be saturated.

FIG. 6: Fits to the proton structure function data, F
p

2 (x, Q2)
vs. x of the form ln2 s, for 13 values of Q2. The data are from
the ZEUS collaboration [10]. The curves show 13 of 28 global
fits [3]. The vertical and horizontal straight lines intersect at
the scaling point xP = 0.09, F

p
2 (xP) = 0.41.

The “Aspen” model. The “Aspen” model is a QCD-
inspired eikonal model [11] which naturally yields total pp
and p̄p cross sections that go as ln2 s at large energies, i.e.,
they automatically saturate the Froissart bound. From

FIG. 7: The elastic differential scattering cross section dσ
dt

, in

mb/(GeV/c)2 vs. |t|, in (GeV/c)2, using a constrained Aspen
Model fit (QCD-inspired theory). The solid curve is the predic-
tion for the reaction pp → pp at the LHC, at

√
s = 14 TeV. The

dashed curve is the prediction for the reaction p̄p → p̄p at
√

s = 1.8
TeV, at the Tevatron Collider; the data points are from the E710
experiment.

the model, one can extract the total cross section σtot,
the ρ-value, the elastic cross section σel, the nuclear slope
parameter B (the logarithmic derivative of dσel/dt at
t = 0) and dσel/dt as a function of t, the squared 4-
momentum transfer. Shown in Fig. 7 is a constrained
Aspen-model fit [12] to dσel/dt vs. |t|, for 1.8 TeV , com-
pared to E710 data at 1.8 TeV; the fit is excellent. Also
shown is the prediction for the LHC, at 14 TeV. For more
details af the model and for results for constrained total
cross sections, etc., see Ref. [12].

Cosmic ray predictions. There are now available pub-
lished [13–16] and preliminary [17, 18] p-air inelastic pro-
duction cross sections (σinel

p−air) that span the enormous pp

cms (center-of-mass system) energy range 0.1<∼
√

s <∼ 100
TeV, reaching energies well above the Large Hadron Col-
lider (LHC). Further, we expect high statistics results
from the Pierre Auger Collaboration [19] in the near fu-
ture in this ultra-high energy region. Most importantly,
we now have available very accurate predictions at cos-
mic ray energies for the total pp cross section, σpp, from
fits [20] to accelerator data that used adaptive data sift-
ing algorithms [21] and analyticity constraints [22] that
were not available in the earlier work of Block, Halzen
and Stanev [23]. Here we take advantage of these new pp
cross section predictions in order to make accurate pre-
dictions of the cosmic ray p-air total cross sections, to be
compared with past and future experiments.

Extracting proton–proton cross sections from pub-
lished cosmic ray observations of extensive air showers,
and vice versa, is far from straightforward [24]. By a
variety of experimental techniques, cosmic ray experi-
ments map the atmospheric depth at which extensive air
showers develop and measure the distribution of Xmax,
the shower maximum, which is sensitive to the inelas-
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tic p-air cross section σinel
p−air. From the measured Xmax

distribution, the experimenters deduce σinel
p−air. We will

compare published [13–15] and recently announced pre-
liminary values of σinel

p−air with predictions made from σpp,

using a Glauber model to obtain σinel
p−air from σpp.

σinel
p−air from the Xmax distribution: Method I. The mea-

sured shower attenuation length (Λm) is not only sensi-
tive to the interaction length of the protons in the atmo-
sphere (λp−air) [25], with

Λm = kλp−air = k
14.4mp

σinel
p−air

= k
24, 100

σinel
p−air

, (25)

(with Λm and λp−air in g cm−2, the proton mass m in g,
and the inelastic production cross section σinel

p−air in mb),
but also depends on the rate at which the energy of the
primary proton is dissipated into electromagnetic shower
energy observed in the experiment. The latter effect is
parameterized in Eq. (25) by the parameter k. The value
of k depends critically on the inclusive particle produc-
tion cross section and its energy dependence in nucleon
and meson interactions on the light nuclear target of the
atmosphere (see Ref. [24]). We emphasize that the goal
of the cosmic ray experiments is σinel

p−air (or correspond-
ingly, λp−air), whereas in Method I, the measured quan-
tity is Λm. Thus, a significant drawback of Method I is
that one needs a model of proton-air interactions to com-
plete the loop between the measured attenuation length
Λm and the cross section σinel

p−air, i.e., one needs the value

of k in Eq. (25) to compute σinel
p−air. Shown in Table I are

the widely varying values of k used in the different exper-
iments. Clearly the large range of k-values, from 1.15 for
EASTOP [17] to 1.6 for Fly’s Eye [13] differ significantly,
thus making the published values of σinel

p−air unreliable. It
is interesting to note the monotonic decrease over time in
the k’s used in the different experiments, from 1.6 used
in Fly’s Eye in 1984 to the 1.15 value used in EASTOP in
2007, showing the time evolution of Monte Carlo models
of energy dissipation in showers. For comparison, Monte
Carlo simulations made by Pryke [26] in 2001 of several
more modern shower models are also shown in Table I.
Even among modern shower models, the spread is still
significant: one of our goals is to minimize the impact of
model dependence on the σinel

p−air determination.

σinel
p−air from the Xmax distribution: Method II. The

HiRes group [16] has developed a quasi model-free
method of measuring σinel

p−air directly. They fold into their
shower development program a randomly generated ex-
ponential distribution of shower first interaction points,
and then fit the entire distribution, and not just the trail-
ing edge, as done in other experiments [13–15, 17]. They
obtain σinel

p−air = 460±14 (stat)+39 (syst)−11 (syst) mb

at
√

s = 77 TeV, which they claim is effectively model-
independent and hence is an absolute determination [16].

Extraction of σpp from σinel
p−air. The total pp cross sec-

tion is extracted from σinel
p−air in two distinct steps. First,

TABLE I: A table of k-values, used in experiments and from
Monte Carlo model simulation

Experiment k

Fly’s Eye 1.6
AGASA 1.5
Yakutsk 1.4
EASTOP 1.15
Monte Carlo Results: C.L. Pryke
Model k

CORSIKA-SIBYLL 1.15± 0.05
MOCCA–SIBYLL 1.16± 0.03

CORSIKA-QGSjet 1.30± 0.04
MOCCA–Internal 1.32± 0.03

one calculates the p-air total cross section, σp−air, from
the measured inelastic production cross section using

σinel
p−air = σp−air − σel

p−air − σq−el
p−air . (26)

Next, the Glauber method [27] is used to transform the
measured value of σinel

p−air into the pp total cross section
σpp; all the necessary steps are calculable in the theory.
In Eq. (26) the measured cross section for particle pro-

duction is supplemented with σel
p−air and σq−el

p−air, the elas-
tic and quasi-elastic cross section, respectively, as calcu-
lated by the Glauber theory, to obtain the total cross
section σp−air. The subsequent relation between σinel

p−air

and σpp critically involves the nuclear slope parameter
B, the logarithmic slope of forward elastic pp scattering,
dσel

pp/dt. A plot of B against σpp, 5 curves of different

values of σinel
p−air, is shown in Fig. 8, taking into account

inelastic screening [28]. The reduction procedure from
σinel

p−air to σpp is summarized in Ref. [24]. The solid curve
in Fig. 8 is a plot of B vs. σpp—with B taken from the
“Aspen” eikonal model and σpp taken from the ln2 s fit
using analytic amplitudes. The large dot corresponds to
the value of σpp and B at

√
s = 77 TeV, the HiRes energy,

thus fixing the HiRes predicted value of σinel
p−air.

Obtaining σpp from σinel
p−air. In Fig. 9, we have plotted

the values of σpp vs. σinel
p−air that are deduced from the

intersections of the B-σpp curve with the σinel
p−air curves in

Fig. 8. Figure 9 furnishes cosmic ray experimenters with
an easy method to convert their measured σinel

p−air to σpp,
and vice versa.

Determining the k value. In Method I, the extraction
of λp−air (or σinel

p−air) from the measurement of Λm re-
quires knowing the parameter k. The measured depth
Xmax at which a shower reaches maximum development
in the atmosphere, which is the basis of the cross sec-
tion measurement in Ref. [13], is a combined measure of
the depth of the first interaction, which is determined by
the inelastic cross section, and of the subsequent shower
development, which has to be corrected for. The model
dependent rate of shower development and its fluctua-
tions are the origin of the deviation of k from unity in
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FIG. 8: B dependence on the pp total cross section σpp. The
five curves are lines of constant σinel

p−air, of 414, 435, 456, 499
and 542 mb—the central value is the published Fly’s Eye
value, and the others are ±1σ and ±2σ. The solid curve is a
plot of a QCD-inspired fit of B against σpp, obtained from a
ln2 s fit. The large dot is the prediction for σinel

p−air at
√

s = 77
TeV, the HiRes energy.

FIG. 9: A plot of the predicted total pp cross section σpp, in
mb vs. the predicted production p-air cross section, σinel

p−air,
in mb, where

Eq. (25). As seen in Table I, its values range from 1.6 for
a very old model where the inclusive cross section exhib-
ited Feynman scaling, to 1.15 for modern models with
large scaling violations.

Adopting the same strategy that earlier had been used
by Block, Halzen and Stanev [23], we matched the data
to our prediction of σinel

p−air(s), extracting a common value
for k, neglecting the possibility of a weak energy depen-
dence of k over the range measured, found to be very
small in the simulations of Ref. [26]. By combining the
results of B from the “Aspen” model and Fig. 9, we ob-
tain our prediction of σinel

p−air vs.
√

s, which is shown in

Fig. 10. Leaving k as a free parameter,we make a χ2

fit to rescaled σinel
p−air(s) values of Fly’s Eye, [13]AGASA

[14], EASTOP [17] and Yakutsk [15], the experiments
that need a common k-value.

Figure 10 is a plot of σinel
p−air vs.

√
s, the cms energy

in GeV, for the two different types of experimental ex-
traction, using Methods I and II described earlier. Plot-
ted as published is the HiRes value at

√
s = 77 TeV,

since it is an absolute measurement. We have rescaled in
Fig. 10 the published values of σinel

p−air for Fly’s Eye [13],
AGASA [14], Yakutsk [15] and EAS-TOP [17], against
our prediction of σinel

p−air, using the common value of

k = 1.264 ± 0.033 ± 0.013 obtained from a χ2 fit, and
it is the rescaled values that are plotted in Fig. 10, along
with the rescaled values of ARGO-YBJ [18], which were
not used in the fit. The error in k of 0.033 is the sta-
tistical error of the χ2 fit, whereas the error of 0.013 is
the systematic error due to the error in the prediction
of σinel

p−air. Clearly, we have an excellent fit, with com-
plete agreement for all experimental points. Our anal-
ysis gave χ2 = 3.19 for 11 degrees of freedom (the low
χ2 is likely due to overestimates of experimental errors).
We note that our k-value, k = 1.264 ± 0.033 ± 0.013,
although somewhat too small for the very low energy
ARGO-YBJ data, is about halfway between the values
of CORSIKA-SIBYLL and CORSIKA-QSGSjet found in
the Pryke simulations [26], as seen in Table I for model
predictions. We next compare our measured k parame-
ter with a recent direct measurement of k by the HiRes
group [31]. They measured the exponential slope of
the tail of their Xm distribution, Λm and compared it
to the p-air interaction length λp−air that they found.
Using Eq. (25), they deduced that a preliminary value,
k = 1.21 + 0.14 − 0.09, in agreement with our value.

FIG. 10: A χ2 fit of the renormalized AGASA, EASTOP,
Fly’s Eye and Yakutsk data for σinel

p−air, in mb, as a function of
the energy,

√
s, in GeV. The result of the fit for the parameter

k in Eq. (25) is k = 1.263 ± 0.033. The HiRes point (solid
diamond), at

√
s = 77 GeV, is model-independent and has

not been renormalized. The renormalized ARGO-YBJ data
were not used in the fit.
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Taken together with the goodness-of-fit of our fitted k
value and the fact that our value, k = 1.264±0.033±0.013
is compatible with the range of k values from theoretical
models shown in Table I, the preliminary HiRes value
[31] of k = 1.21 + 0.14 − 0.09 is additional experimen-
tal confirmation of our overall method for determining
k, i.e., our assumptions that the k value is essentially
energy-independent, as well as being independent of the
very different experimental techniques for measuring air-
showers. Our measured k value, k = 1.264±0.033±0.013,
agrees very well with the preliminary k-value measured
by the HiRes group, at the several parts per mil level; in
turn, they both agree with Monte Carlo model simula-
tions at the 5–10 part per mil level.

It should be noted that the preliminary EASTOP mea-
surement [17]—at the cms energy

√
s = 2 TeV—is at

an energy essentially identical to the top energy of the
Tevatron collider, where there is an experimental deter-
mination of σp̄p [32], and consequently, no necessity for
an extrapolation of collider cross sections. Since their
value of σinel

p−air is in excellent agreement with the pre-

dicted value of σinel
p−air, this anchors our fit at its low en-

ergy end. Correspondingly, at the high end of the cosmic
ray spectrum, the absolute value of the HiRes experimen-
tal value of σinel

p−air at 77 TeV—which requires no knowl-
edge of the k parameter—is also in good agreement with
our prediction, anchoring the fit at the high end. Thus,
our σinel

p−air predictions, which span the enormous energy

range, 0.1<∼
√

s<∼ 100 TeV, are consistent with cosmic ray
data, for both magnitude and energy dependence.

Shown in Fig. 11 are all of the known pp and p̄p totl
cross section data, including the cosmic ray points, span-
ning the energy region from 2 GeV to 80 TeV, fitted by
the same ln2 s (saturated Froissart bound) fit of the even
cross section σ0 = (σpp + σp̄p)/2.

CCCR: Cyclotrons to Colliders to Cosmic Rays. We
have finally reached our goal. This long energy tale of
accelerator experiments, extending over some 55 years,
from those using cyclotrons to those using synchrotons
and then, finally, to those using colliders, has now been
unified with those experiments using high energy cosmic
rays as their beams. The accelerator experiments had
large fluxes and accurate energy measurements, allowing
for precision measurements: the more precise, the lower
the energy. On the other hand, the cosmic ray exper-
iments always suffered from low fluxes of particles and
poor energy determinations of their events, but made up
for that by their incredibly high energies.

The ability to clean up accelerator cross section and
ρ-value data by the Sieve algorithm, along with new fit-
ting techniques using analyticity constraints in the form
of anchoring high energy cross section fits to the value
of low energy pp and p̄p experimental cross sections (and
their energy derivatives) have furnished us with a preci-
sion fit—using the a ln2 s form that saturates the Frois-

FIG. 11: All known [30] σpp and σp̄p accelerator total cross
sections, shown together with σpp deduced from the AGASA, Fly’s
Eye and HiRes cosmic ray experiments. pp and p̄p accelerator total
cross sections, in mb, vs. the c.m. energy

√
s, in GeV. The circles

are p̄p and the open squares are pp data. The solid curve is a
plot of σ0, the even nucleon-nucleon cross section, taken from an
analytically constrained global ln2 s fit which included the cosmic
ray data. The AGASA data are the triangles, the Fly’s Eye point
is the diamond and the HiRes point is the open diamond.

sart Bound—which allows us to make accurate extrapo-
lations into the LHC and cosmic ray regions, extrapola-
tions guided by the principles of analyticity and unitarity
embodied in the Froissart Bound.
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