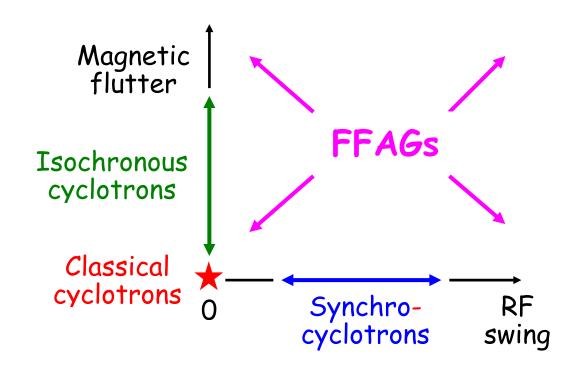
INTRODUCTION TO FFAG ACCELERATORS

M.K.Craddock

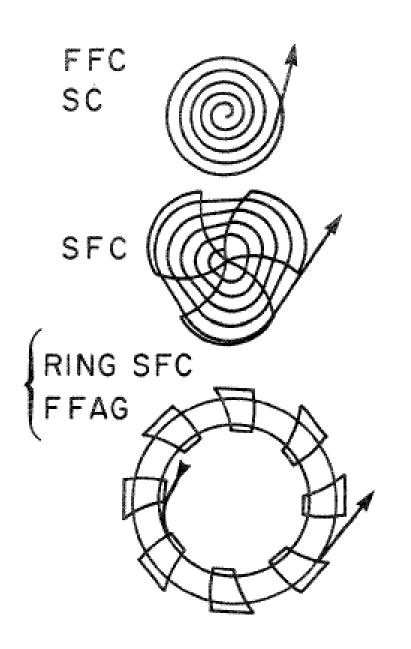
Department of Physics and Astronomy,
University of British Columbia
& TRIUMF

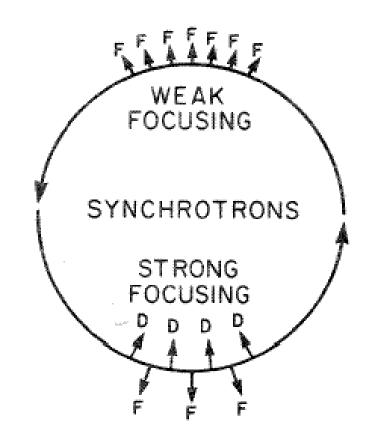
With grateful acknowledgements to the colleagues who have kindly provided images and other material


FFAG'09 Workshop, Fermilab, 21-25 September, 2009

FFAGs - Fixed Field Alternating Gradient accelerators

Fixed Magnetic Field - members of the CYCLOTRON family¹


Magnetic field	Fixed Frequency	Frequency-modulated
variation B(θ)	(CW beam)	(Pulsed beam)
Uniform	Classical	Synchro-
Alternating	Isochronous	FFAG


But FFAG enthusiasts sometimes express an alternative view:
- cyclotrons are just special cases of the FFAG!

1. E.M. McMillan, Particle Accelerators, in Experimental Nuclear Physics, III, 639-786 (1959)

THE CYCLOTRON AND SYNCHROTRON FAMILIES

FFC = fixed frequency cyclotron

SC = synchrocyclotron

SFC = sector-focused cyclotron

FFAG = fixed field alternating gradient

BASIC CHARACTERISTICS OF FFAGS

are determined by their FIXED MAGNETIC FIELD

- Spiral orbits
 - needing wider magnets, rf cavities and vacuum chambers (compared to AG synchrotrons)
- Faster rep rates (up to kHz?) limited only by rf capabilities
 not by magnet power supplies
- Large acceptances
- High beam current

The last 3 factors have fuelled interest in FFAGs over 50 years!

Good reading:

- K.R. Symon, D.W. Kerst, et al., Phys. Rev. 103, 1837 (1956)
- C.H Prior (ed.) <u>ICFA Beam Dynamics Newsletter 43</u>, 19-133 (2007);
- FFAG Workshops Web links at FFAG04 and FFAG 2007.

BRIEF HISTORY

FFAGs were proposed by Ohkawa, Kolomensky, Symon and Kerst, (1953-5)

- and studied intensively at MURA in the 1950s and 1960s
- several electron models were built and operated successfully
- but no proton FFAG until Mori's at KEK (1 MeV 2000, 150 MeV 2003)

Now there's an explosion of interest!

- 6 more are now operating (for p, e, α) and 3 more (e) are being built
- ~20 designs under study:
 - for protons, heavy ions, electrons and muons
 - many of novel "non-scaling" design
- with diverse applications:
 - cancer therapy
 - industrial irradiation
 - driving subcritical reactors
 - boosting high-energy proton intensity
 - producing neutrinos.

FFAG Workshops since 1999:- Japan (x8), CERN, USA(x3), Canada, France, UK

SCALING DESIGNS - HORIZONTAL TUNE Vr

Resonances were a worry in the 1950s, because of slow acceleration: if, at some energy, the betatron oscillation wavelength matches that of a harmonic component of the magnetic field, the ions may be driven into resonance, leading to loss of beam quality or intensity. The general condition is $\ell v_x \pm m v_y = n$ where ℓ , m, n are integers.

So "Scaling" designs were used, with:

- the same orbit shape at all energies
- the same optics " " " " "
- the <u>same tunes</u> " " " \Rightarrow no crossing of resonances!

To 1st order, the (radial tune)² $v_r^2 \approx 1 + k$ (even with sector magnets)

where the average field index $k(r) \equiv \frac{r}{B_{av}} \frac{dB_{av}}{dr}$ and $B_{av} = \langle B(\Theta) \rangle$

So large constant v_r requires $k = constant \ge 0$

$$\Rightarrow B_{av} = B_0 (r/r_0)^k$$
 and $p = p_0 (r/r_0)^{(k+1)}$

SCALING FFAGS - VERTICAL TUNE Vz

In the vertical plane, with sector magnets and to 1st order,

$$v_z^2 \approx -k + F^2(1 + 2\tan^2 \varepsilon)$$

where the 2nd term describes the Thomas and spiral edge focusing effects.

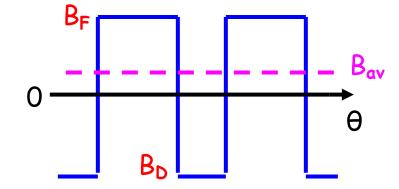
Note $k > 0 \Rightarrow vertical defocusing$

: large constant, real v_z requires large, constant $F^2(1 + 2\tan^2 \varepsilon)$

MURA kept (1) magnetic flutter
$$F^2 \equiv \left\langle \left(\frac{B(\theta) - B_{av}}{B_{av}} \right)^2 \right\rangle = \text{constant}$$

(most simply achieved by using constant profile $B(\Theta)/B_{av}$)

(2a) for spiral sectors,


spiral angle ε = constant (sector axis follows R = $R_0e^{\Theta \cot \varepsilon}$)

(2b) for radial sectors,

$$B_D = -B_F$$
 to boost F^2 .

Note - reverse fields increase average radius:

$$\Rightarrow$$
 >4.5x larger (Kerst & Symon'56 - no straights)

[Not so bad with straights: KEK 150-MeV FFAG has "circumference factor" 1.8]

In summary, scaling requires:-

- constant field index
- constant and high flutter, with opposing F and D fields (if radial)
- constant spiral angle (if spiral)
- meaning complex wide-aperture sector magnets

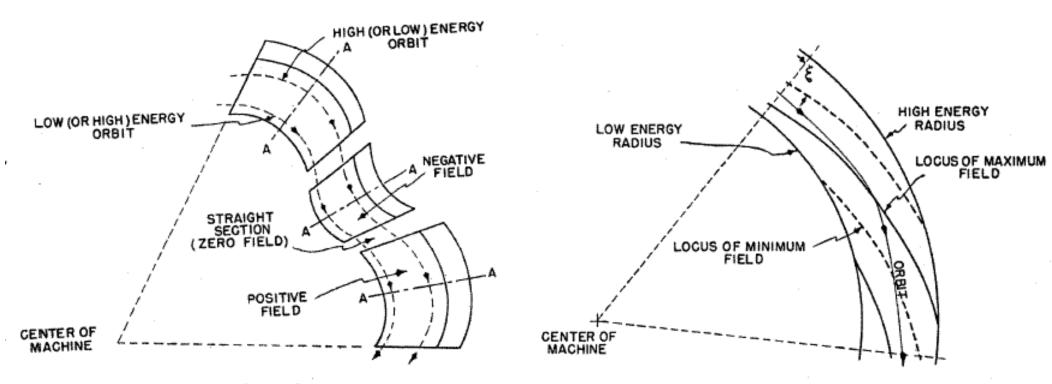
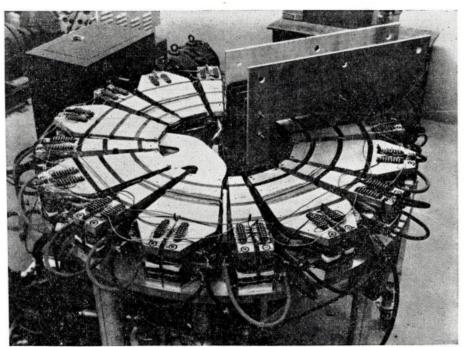


Fig. 2. Plan view of radial-sector magnets.

Fig. 3. Spiral-sector configuration.

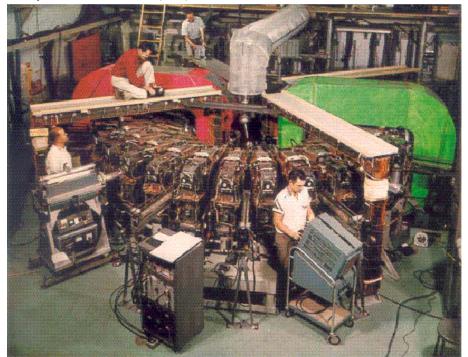
K.R. Symon, D.W. Kerst, L.W. Jones, L.J. Laslett and K.M. Terwilliger, *Phys. Rev.* **103**, 1837 (1956)

MURA Electron FFAGs


400keV radial sector

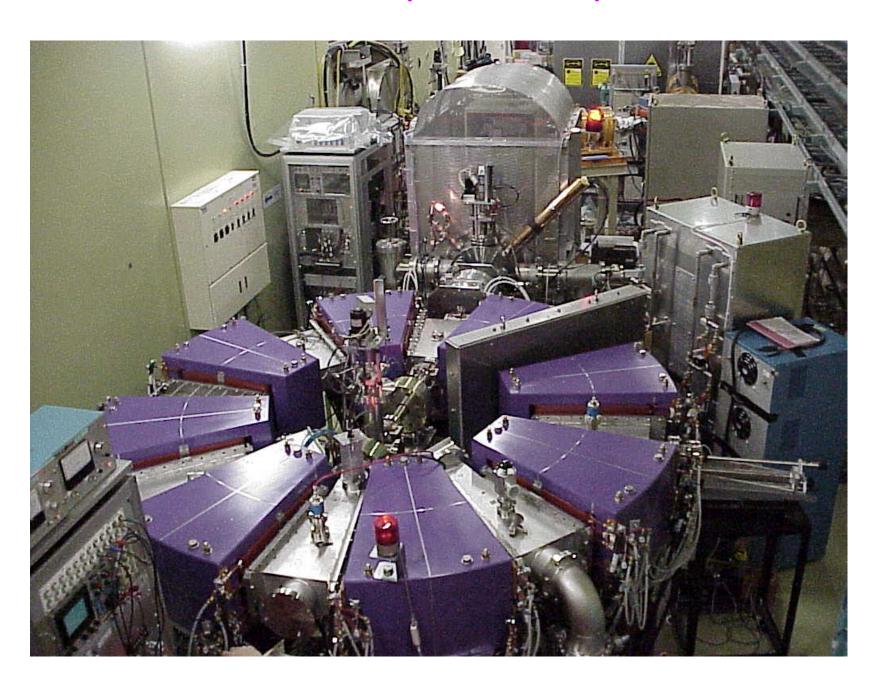
50 MeV radial sector

120 keV spiral sector



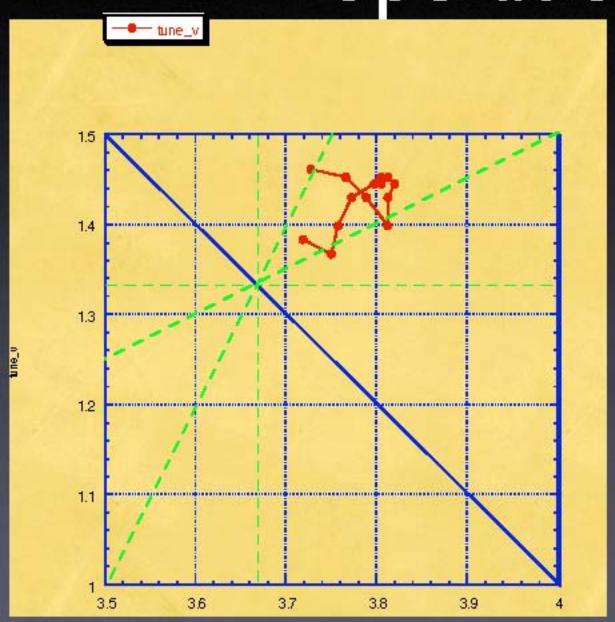
Courtesy of MURA

Courtesy of MURA


K.R. Symon, Proc PAC03, 452 (2003)

ASPUN (ANL, 1983) 1500 MeV x 4 mA

GENERAL '			
Number of magnets	20		
SECTOR MIDTH	3.6"	XXX	
FIELD INDEX, K	14	X X	
SPIRAL ANGLE	61"	REMOTE HANDLING OF EXTRACTION SYSTEM STEERING DOWN	=
ν _X	4.25	EXTRACTION SEPTUM	
vy	3.3		
MAXIMUM REPETITION RATE	250 Hz	EXTRACTION DUMP DUMP SEPTUM	
AVERAGE CURRENT	4 mA	KICKER	
SPACE CHARGE LIMIT	1014	DLMP FOR UNCAPTURED BEAM	:
STACK ENERGY	1250 MEY	BEAM A A	
BUNCHES/STACK	6	EXTRACTION PRE BEND UP	15
RF FREQUENCY	2.11-3.09		
	1.55-1.57		
Injection		1 N 1 1/200	20
€ _{INJ}	200 MEY	N N P ON 1 19	
Bp	2.15 T-M	A I I PENOTE HAND INC.	SECTION "A-A"
В	0.413 T	REMOTE HANDLING	*
<r>INJ</r>	25.88 H		
6 X	650 · MHHR	HI E LINSTRIPPED MEUTRAL BEAM	0 5 IOMETERS
ξψ	500 × MHHR		
annibusa.			
EXTRACTION			N
EEXTR	1500 MEY		Ν .
. B _P	7.5067 T-M		
В	1.327 T		
<r>EXT</r>	28.139 tv.		
·			


KEK Proof-of-Principle 1 MeV proton FFAG

KEK 150-MeV 12-Sector Proton FFAG

12-150MeV mode operation

criterion

1) △ v<0.1

2) avoid structure & linear resonaces

INNOVATIONS AT KEK

Mori's 1-MeV (2000) and 150-MeV proton FFAGs introduced two important innovations:

- 1. FINEMET metallic alloy loading in the rf cavities, allowing:
 - rf modulation at 250 Hz or more \rightarrow high beam-pulse rep rates (remember the unreliable rotary capacitors on synchrocyclotrons, which operate in the same mode as FFAGs)
 - high permeability → short cavities with high effective fields
 - low Q (\cong 1) \rightarrow broadband operation

2. DFD triplet sector magnets:

- powered as a single unit
- D acts as the return yoke, automatically providing reverse field
- modern techniques enable accurate computation of the pole shape for constant field index k

"Return-yoke-less" DFD Triplet for 150-MeV FFAG

RF system

Large Magnetic Alloy (FINEMET) Cavity

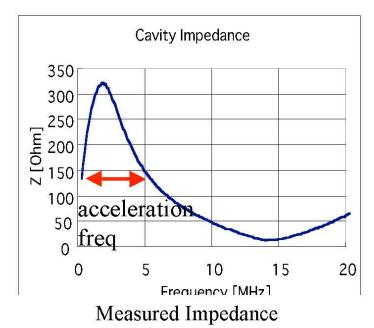
Number of core 4 pieces

Outer (Inner) size 1700x950mm(980x230mm)

Core thickness 25mm

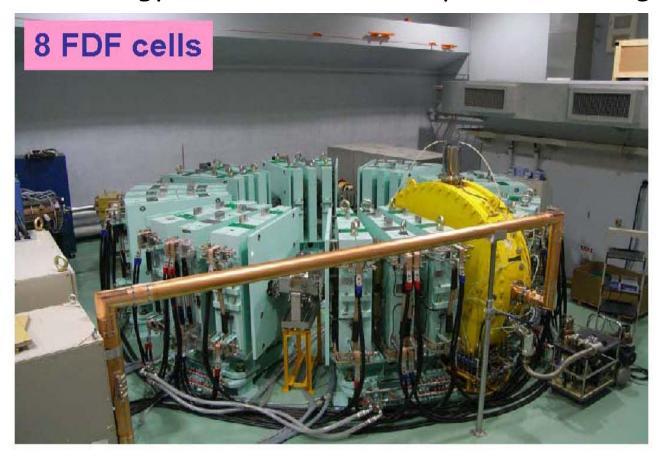
RF frequency 1.5 - 4.6 MHz

RF voltage 9kV


RF output 55kW

Power density 1W/cm3

Cooling water 70 L/min


FFAG Complex at Kyoto University Research Reactor Inst.

• to test Accelerator-Driven Sub-critical Reactor (ADSR) operation


KURRI ERIT STORAGE RING FOR BNCT

(ERIT = Energy/Emittance Recovery Internal Target)

70-mA of circulating 11-MeV protons produce an intense neutron beam (>10 9 /cm 2 /s at the patient) via the Be(p,n) reaction. V_{rf} = 250 kV plus large FFAG acceptances (>3000 mm-mrad, ±5% δ p/p) allow ionization cooling to maintain stable beam over 1000 turns.

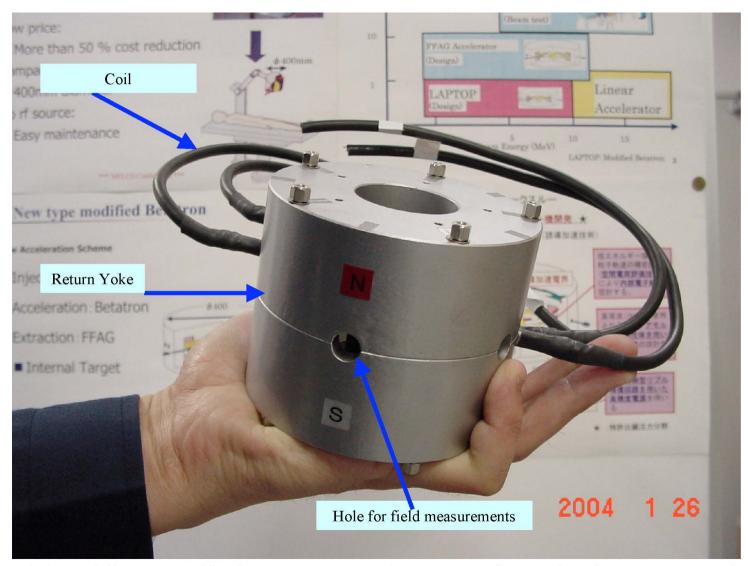
α-PARTICLE TEST RING FOR PRISM AT RCNP OSAKA

Using 6 of the PRISM storage ring's 10 sectors to demonstrate bunch rotation in phase space

SCALING FFAGS

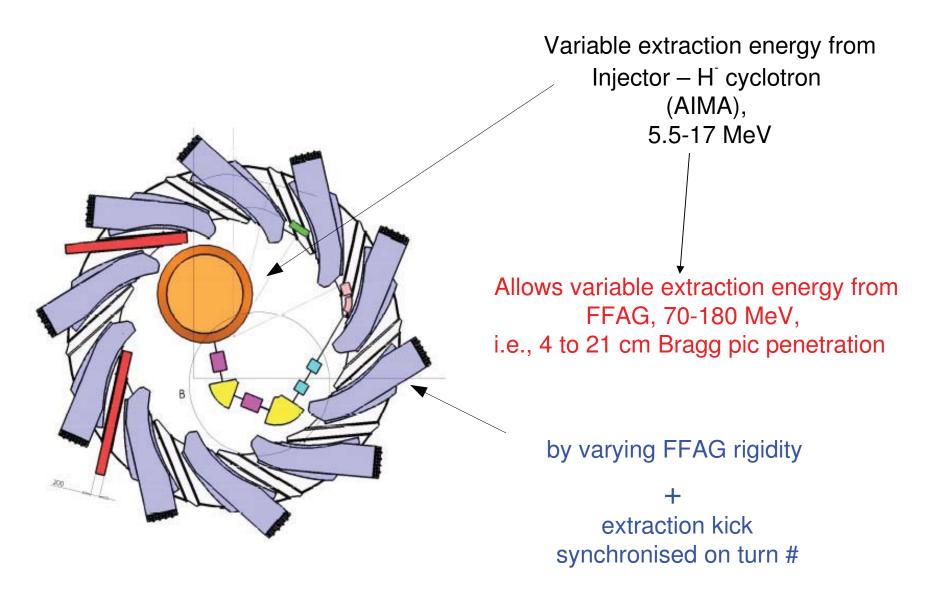
- IN OPERATION OR UNDER CONSTRUCTION -

	Energy (MeV/u)	Ion	Cells	Spiral angle		1 st beam
KEK - POP	1	р	8	0°	0.8-1.1	2000
KEK	150	p	12	0°	4.5-5.2	2003
KURRI - ADSR	150	p	12	0°	4.5-5.1	2006
(Accelerator-Driver	20	p	8	0°	1.3-1.9	2006
Subcritical Reactor	2.5	p	8	40°	0.6-1.0	2008
KURRI-ERIT (BNCT	7) 11	p	8	0°	2.35	2008
PRISM study	0.8	α	6	0°	3.3	2008
PRISM*	20	μ	10	0°	6.5	
NHV	0.5	e	6	30°	0.19-0.44	2008
RadiaBeam Radiatro	n 5	e	12	0°	0.3-0.7	(2009)

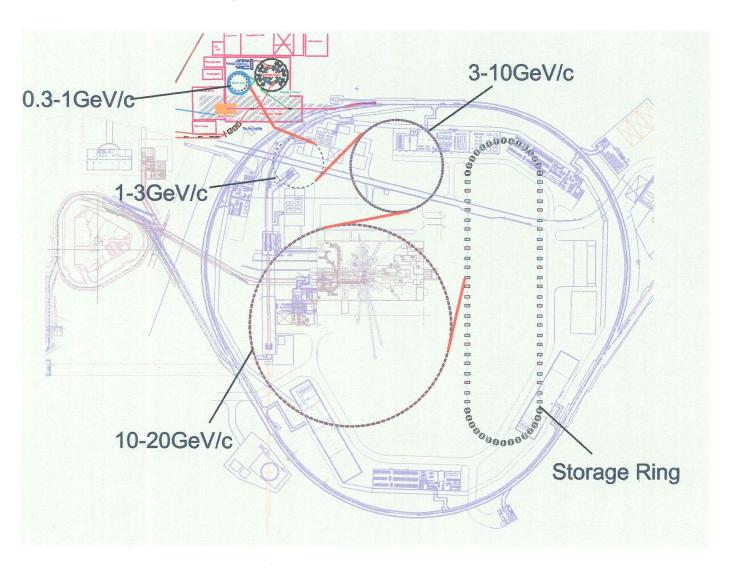

^{*} storage ring for $\boldsymbol{\mu}$ bunch rotation in phase space

SCALING FFAGs - DESIGN STUDIES

	Energy (MeV/u)		Cell	s Spira angle	l Radius (m)	Rep rate (Hz)	Comments
MEICo - Laptop	1	e	5	35°	.023028	1,000	Hybrid - <u>Magnet built</u>
eFF <i>AG</i>	10	e	8	47°	0.26 - 1.0	5,000	20-100 mA
LPSC RACCAM	180	p	10	54°	3.2 - 3.9	> 20	Magnet sector 2008
Ibaraki Med.Acc.	230	p	8	50°	2.2 - 4.1	20	0.1 μΑ
MEICo - p Therapy	230	р	3	0°-60	° 0 - 0.7	2,000	SC, Quasi-isochronous
MEICo - Ion Thero (Mitsubishi Electr	• •	C ⁶⁺	16 8	64° 0°	7.0 - 7.5 1.35 - 1.8	0.5 0.5	Hybrid (FFAG/synch ⁿ) " " "
NIRS Chiba - Hadron Therapy	<pre>{400 { 100</pre>	C ⁶⁺ " C ⁴⁺	12 12 10	0° 0°	10.1 - 10.8 5.9 - 6.7 2.1 - 2.9	, II	Compact radial sectors
Mu Cooling Ring	160	μ	12	0°	0.95 ± 0.08	3	Gas-filled
J-PARC Neutrino	20,000	'n h	120 64	0° 0°	200 90		$\Delta r = 0.5 \text{ m}$, ~10 turns.
Factory	3,000	w	32	0°	30		Q≈1 rf cavities allow
Accelerators	1,000	**	16	0°	10		broadband operation



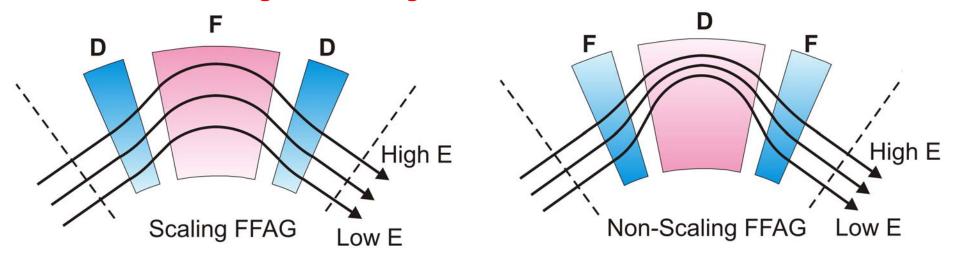
Spiral Magnet



The present study is partially supported by the REIMEI Research Resources of Japan Atomic Energy Research Institute.

Principle of Energy Variability for RACCAM System

Neutrino Factory: FFAG based


LINEAR NON-SCALING (LNS) FFAGS

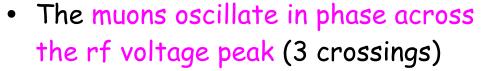
FFAGs look attractive for accelerating muons in μ Colliders or ν Factories

- Large acceptance (in r & p) eliminates cooling & phase rotation stages
- Rapid acceleration (<20 turns) makes resonance crossing ignorable (Mills '97)
- Less expensive than recirculating linacs.

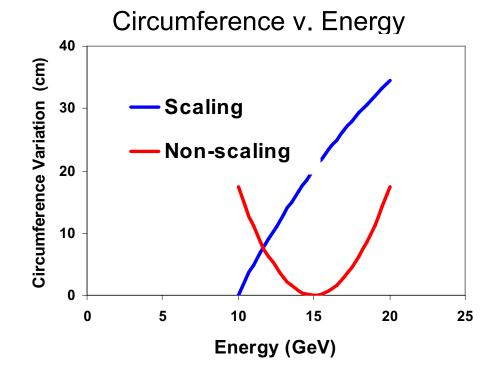
NON-SCALING approach first tried by Carol Johnstone (arc 1997, ring 1999)

- strong positive-bending Ds + negative Fs i.e. negative field gradients!
- "LINEAR" constant-gradient magnets.

This leads to:

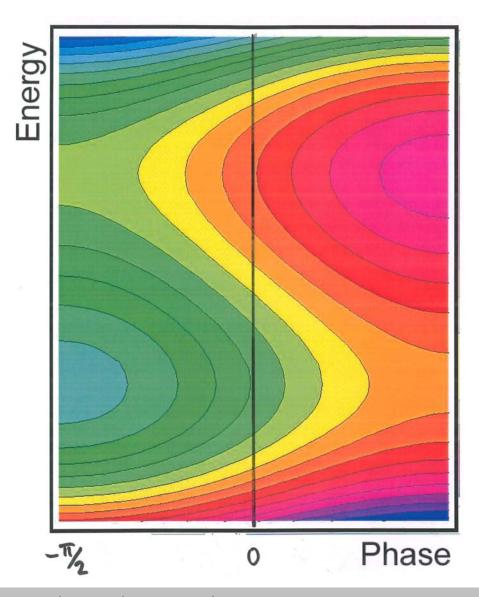

- Greater momentum compaction (& hence narrower radial apertures);
- No multipole field components to drive betatron resonances >1st order;
- Simpler construction (B \propto r rather than r^k).

SCALING V. LINEAR NON-SCALING FFAGS

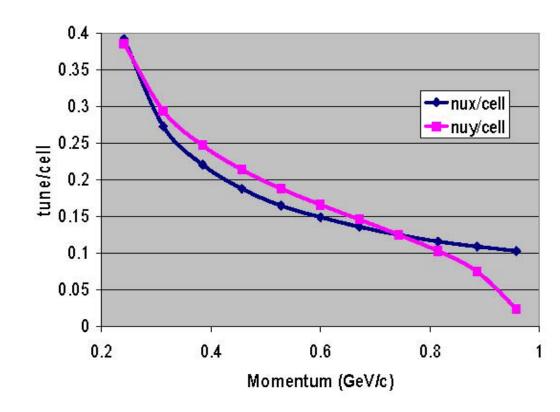

Note that for LNS-FFAGs, orbit circumference C varies quadratically with energy rather than rising monotonically:

$$C(p) = C(p_m) + \frac{12\pi^2}{e^2 q^2 N L_{FD}} (p - p_m)^2$$

So less variation in C and orbit period, enabling fixed rf frequency operation when $v \approx c$.

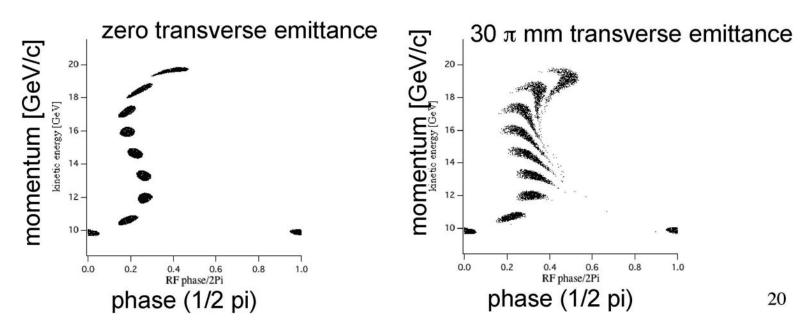

- just as in a real, imperfectly isochronous, cyclotron!

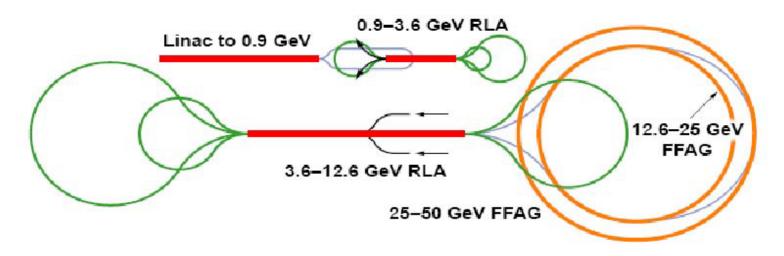
The International Design Study for a Neutrino Factory chose LNS-FFAGs of 12.6-25 GeV and 25-50 GeV for the final stages of muon acceleration - with designs developed by a consortium led by Johnstone (FNAL), Berg (BNL), and Koscielniak (TRIUMF).


Non-linear NS-FFAGs are also being explored.

SERPENTINE ACCELERATION IN LNS-FFAGs

- Not within the buckets but between them
- Follow the golden trail


TUNES IN LNS-FFAGS


If the orbits cross the magnet ends perpendicularly:

- the tunes fall sharply with energy, crossing betatron resonances
- possibly leading to loss of beam quality/quantity
- danger lessened by rapid energy gain, but very expensive
- for muons (τ = 2 μ s): expensive but essential anyhow
- for ions: just expensive

MATCHING LNS-FFAGS

Unfortunately, for large-emittance beams, the radial longitudinal coupling in LNS-FFAGs makes transfer matching difficult. Mitigation techniques exist, but the v Factory ISS concluded that >2 LNS-FFAGs would not be practical - and opted for the more costly recirculating linacs below 12.6 GeV.

ELECTRON MODEL LNS-FFAG "EMMA"

A Proof of Principle machine for linear non-scaling FFAGs to demonstrate their two novel features:

- safe passage through many low-order structural resonances
- acceleration outside buckets.

EMMA has relativistic parameters similar to those of a 10-20 GeV muon FFAG, with a doublet lattice based on offset quadrupoles:

Energy 10-20 MeV

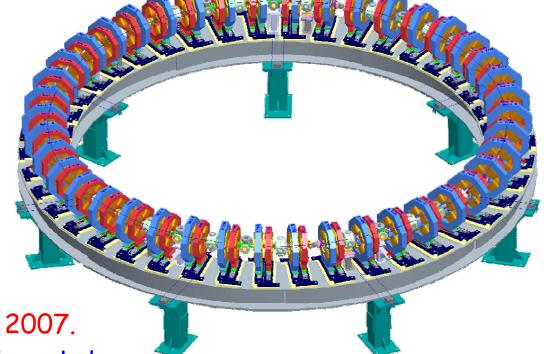
Circumference 16.57 m

Cells 42

N.T. Acceptance 3 mm

F quad length 5.88 cm

D quad length 7.57 cm


RF frequency 1.3 GHz

Cavities $19 \times 120 \text{ kV}$

Injector ALICE (7-35 MeV)

UK funding (\$16M) started April 2007.

Construction under way at Daresbury Lab.

NON-SCALING LATTICES FOR HADRONS

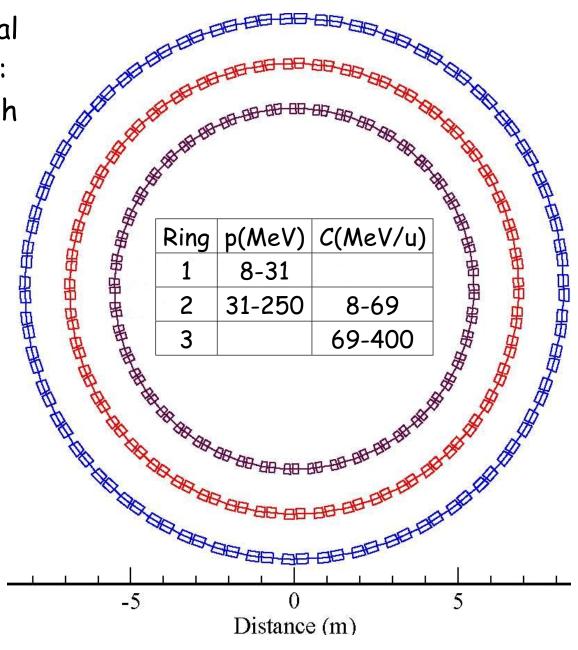
To accelerate hadrons, where $v \ll c$, the wider range of speeds and orbit times τ requires either:

- frequency modulation, or broadband operation,
 - both requiring pulsed beam operation, or
- harmonic number jumping (HNJ) as in microtrons
 - where the energy gain is adjusted to give $\Delta \tau$ = -integer × τ_{rf}
 - allowing cw fixed-frequency operation and higher beam intensity
 - but requiring precise variation of rf cavity voltage with radius.

With the small radial orbit spread, variable-energy extraction can be realized by timing the kicker pulse, even with fixed kicker and septum.

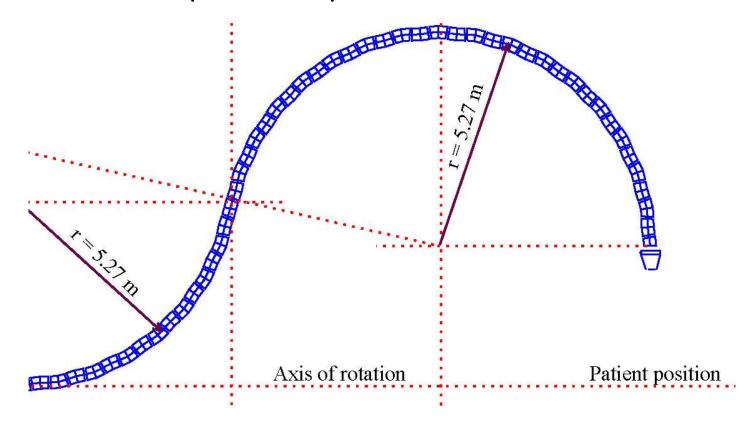
Three groups are actively designing NS-FFAGs for cancer treatment:

- 1. Keil (CERN), Trbojevic (BNL) and Sessler (LBNL)
- 2. Johnstone (FNAL) and Koscielniak (TRIUMF)
- 3. Yokoi, Peach et al. (Adams Inst.) and Machida (RAL).


Keil-Sessler-Trbojevic LNS-FFAG Therapy Complex

The first LNS-FFAG proposal for ion beam cancer therapy:
- three concentric rings, each of 48 doublet cells.

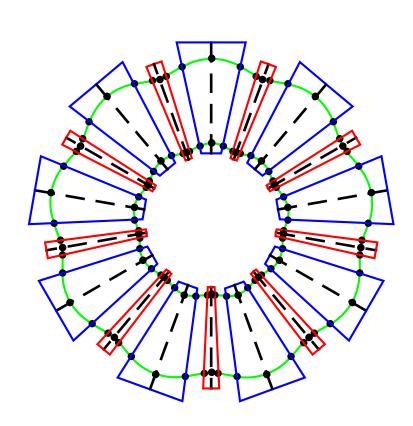
The tunes fall with energy, crossing several n & n/2 imperfection resonances - but no intrinsic resonances below 3rd order - so good beam quality is maintained.


RF is frequency-modulated (in the range 9-25 MHz).

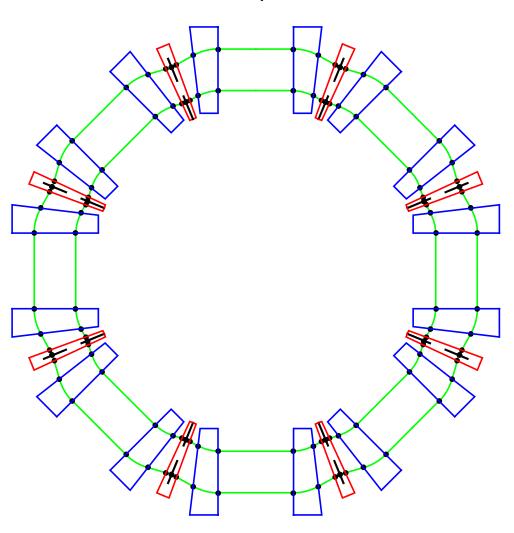
Note the small magnets (cf. NIRS 3-ring S-FFAG).

Keil-Sessler-Trbojevic Lightweight FFAG Gantry

This group has also proposed a lightweight LNS-FFAG gantry, composed of superconducting magnets (either high-temperature or cryogenic) in a close-packed triplet lattice.



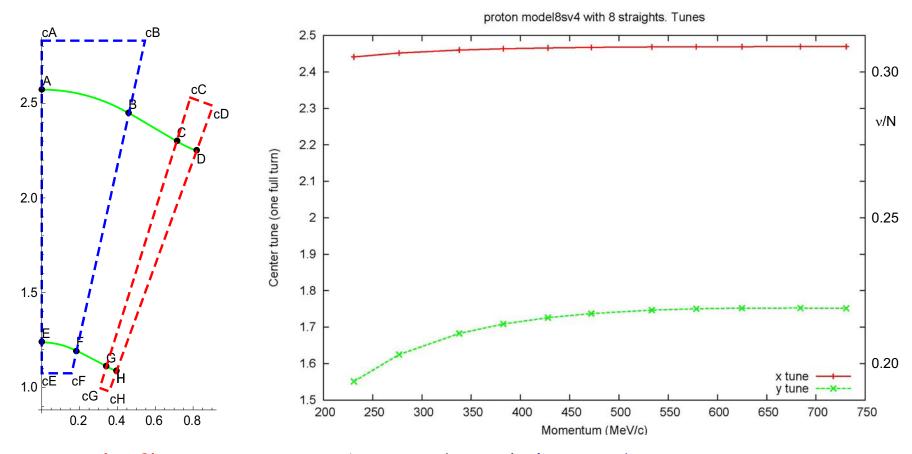
The acceptance is large enough to transmit C^{6+} ions of 150-400 MeV/u at one excitation, and protons of 90-250 MeV at another.


Johnstone-Koscielniak Tune Stabilized NLNS-FFAGs (1)

Two designs are being considered for 30-250 MeV protons

- roughly to scale

9-cell F0D0Orbit radii 1.98-2.49 m



8-cell FDF Orbit radii 2.75-3.39 m

Tune Stabilized NLNS-FFAGs (2)

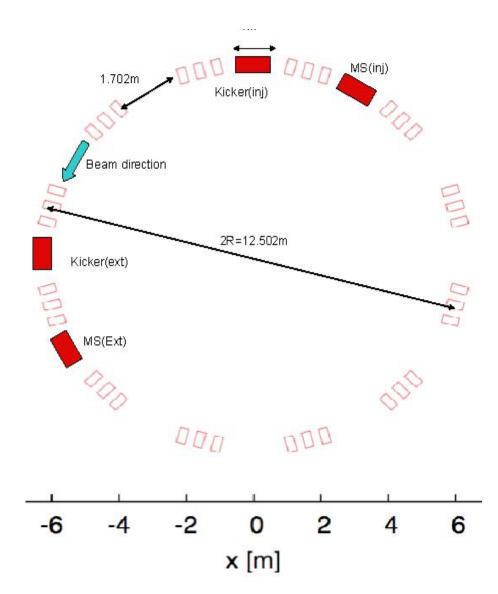
Tune drop-off with energy is avoided by:

- employing the "edge focusing" that occurs for non-perpendicular magnet entry/exit
- allowing a non-linear B(r) field variation

Nearly flat tunes are obtained, with large dynamic apertures.

PAMELA (Adams Inst. - Yokoi, Machida, Peach, et al.)

31 - 250 MeV protons


12-cell FDF

Radius ≈ 6.25 m

4-T magnets

Machida semi-scaling lattice

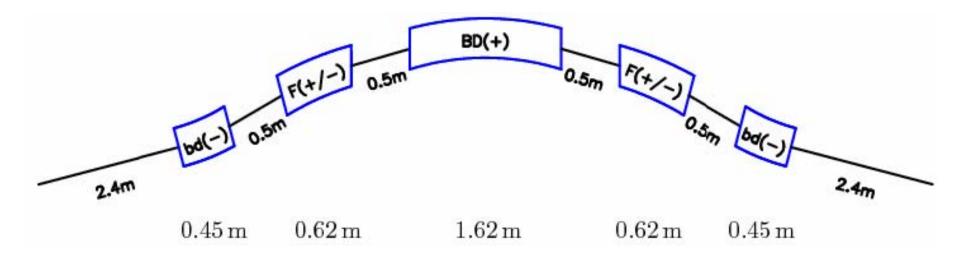
- High field index k (i.e. $B \sim r^k$) for small orbit excursions
- approximate r^k locally by $\sum b_n x^n$ with n = 0, 1, 2, 3 only
- flat tunes, good dynamic aperture

400-MeV/u C⁺ version is being prepared

CURRENT FFAG CANCER THERAPY STUDIES

	Energy	Ion	Cells	Spiral	Radius	Pulse rep.
<u>SCALING</u>	(MeV/u)			angle	(m)	rate (Hz)
KURRI: ERIT	11	р	8	O°	2.35	200
LPSC: RACCAM	17-180	p	10	54°	3.2-3.9	130
NON-SCALING						
12 1	8-31	p	48	0°	5.49-5.52	≤1000
Keil, Sessler & Trbojevic	31-250 8-69	р С ⁶⁺	48	O°	6.86-6.95	≤1000
	69-400	C ⁶⁺	48	0°	8.23-8.32	≤ 1000
Trbojevic	28-250	p	24	0°	4.18-4.42	cw (HNJ)
Johnstone FODO	20.250	•-	9	0°	1.98-2.49	
et al. FDF	30-250	þ	8	0°	2.75-3.39	
PAMELA	30-250	p	12	0°	≈6.25	≤1000 or
(Machida lattice)	7-450	C ⁺				cw (HNJ)

LINEAR NON-SCALING LATTICES FOR HADRONS (3)

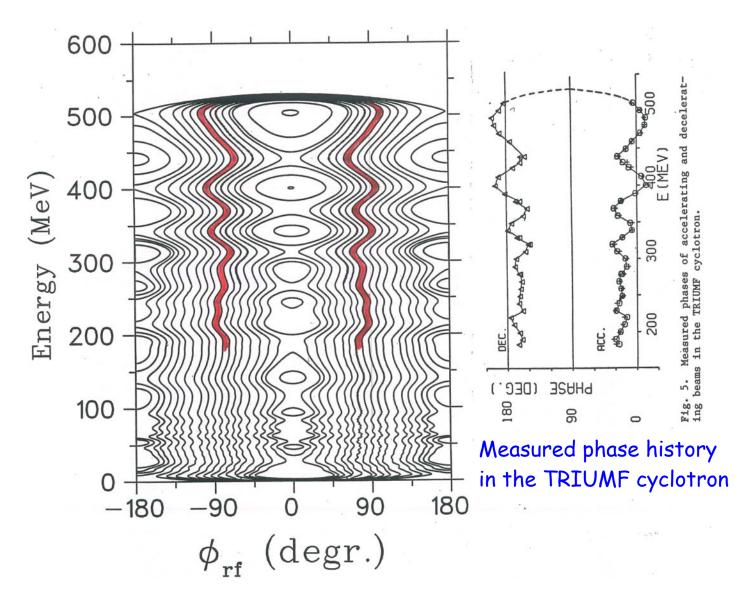

Sandro Ruggiero (BNL) has proposed a number of LNS-FFAGs using FDF triplet cells and HNJ as proton or heavy-ion drivers:

Project	Energy (GeV)	Cells	Circumf. (m)	No. of rings	Rep. rate (Hz)	Current (μA - avg.)	Power (MW-avg.)	
AGS Booster replacement	0.4 - 1.5	136	807	1	2.5 - 5	33	0.05	
Proton Driver I for v Factory	0.4 -12	136	807	3	50	330	4	
Proton Driver II for v Factory	0.4 -12	136	807	3	CW	8,500	100	
MINHA electron model	2-8 × 10 ⁻⁴	48	18	Octant under construction				
Proton Driver for ADSR	0.05 - 1	80	204	2	1,000 - cw	10,000	10	
U ²³⁸ Driver for Radioactive Ions	0.015 - 0.4	80	204	2	1,000 - cw	4.2	0.4	

Note that the same cell structure may be used for more than one application!

NON-LINEAR NON-SCALING LATTICES

G.H. Rees has designed several FFAGs using novel 5-magnet "pumplet" cells, in which variations in field gradient and sign enable each magnet's function to vary with radius - providing great flexibility - even allowing well-matched insertions!



- an isochronous "IFFAG" for muons (8-20 GeV, N = 123, C = 1255 m, 16 turns, as illustrated or with insertions, N = 4 x (20 arc + 10 str.), C = 905 m)
- an IFFAG muon booster (3.2-8 GeV, 8 turns)
- an IFFAG electron model (11-20 MeV, N = 45, C = 29.3 m)
- a v Factory proton driver (3-10 GeV, N = 66, C = 801 m, 50 Hz, 4 MW)
- a vF driver electron model (3.0-5.45 MeV, N = 27, C = 23.8 m)

SUMMARY

- Last 10 years have seen rebirth of interest in FFAGs world-wide
- 8 built, 3 under way, ~20 designs proposed
- Interest stems from applications needing the FFAG's unique characteristics:
 - high rep rate
 - high acceptance
- A whole new class of "non-scaling" FFAGs has been discovered
 - several varieties are being studied
 - perhaps scope for more?

SERPENTINE ACCELERATION IN CYCLOTRONS

- Real cyclotrons are only imperfectly isochronous
- Acceleration occurs along a serpentine path