

EMMA PROJECT STATUS

Neil Bliss, STFC Technology, Daresbury Laboratory

FFAG09 International Workshop Fermilab 21st September 2009

Content

- Technology developments, status and testing
 - Magnets
 - Diagnostics
 - Radio Frequency
- Off line assembly
- Installation in ALICE
- Summary Schedule Update

MAGNETS

Production Quadrupoles

- Magnet construction & measurement s are complete for all 42 D-type and 42 F-type quadrupoles
- Assembly on to girder modules in progress at Daresbury

Measured Harmonics – F & D magnets

Graphs showing spread of harmonics – i.e. variation across magnet family

D magnets seem to show a lot of variation, especially in the n=3 (sextupole) component

Cause unknown

Acc. Phy. group currently looking into effect of this on beam dynamics

Ben Shepherd

Field quality plots

Integrated gradient quality shown

F magnets all within 0.8% for a good field region of ±32mm

D magnets within 0.3% inside rotating coil radius – but good field region is much larger

Ben Shepherd

x mm

Measurements with positive and negative offsets

Measurements of two D magnets were taken with the coil offset by +20mm, and again by -20mm to show how the gradient varied across the entire aperture of the magnet.

Data sent 5 May for D #29 and #35

Ben Shepherd

Field quality (for these two) is within 0.8% inside the good field region (56mm)

Injection Region

Pulsed Magnet Vacuum Chambers

- Chambers manufactured and cleaned, ready for vacuum bake.
- Delivery end of September

Kicker Parameters

Max. beam deflection	105 mR
Hor. good field region	46 mm

Min vertical gap 25 mm

Hor. deflection quality ± 1 %

Min. flat top (+0 -1%) ≥5 nS

Field rise/fall time < 50 nS

Repetition rate 20 Hz

Physical length available 100 mm

Field strength 0.007 Tm

Peak voltage 30 kV

Peak current 1.3kA

- Single turn conductor
- Coaxial feedthrough
- C shape ferrite construction
- Ceramic Magnetics CMD5005
- Air bake at 600°C
- Designed to test at 30kV in air
- Spring loaded box assembly

Conductor

Prototype Kicker power supply

Charging Circuit & Solid State Switch

Magnetic switch

Pulse forming network (PFN)

Ferrite rings

Current monitor

Coaxial feedthrough

Kicker magnet

Outer enclosure removed for clarity

Kicker Measurement Method

- Rectangular coil, 300 mm long, 3mm thick; metallic layer (100 μm) on the appropriate sides
- Gives the integrated field strength
- Coil positioning with the Hall-probe bench
- Plans to make a detailed field map with a 6 mm diameter small coil didn't quite work out: stray capacitance in the coil creates a resonance

6/????/2009 16:32:35

Kicker: calibration

The current can be measured independently with a CT installed on the kicker PSU and thus I_{eff} can be obtained.

$$I_{eff} = 130 \text{ mm}.$$

ELEKTRA simulations give the **same** value.

At full kicker strength the long coil generates voltages of the order of 1kV.

Attenuators are necessary

Repeated the measurements using attenuators & determined the attenuation coefficient

Kicker @ ½ of the max. specified kicker strength

Ringing in the pulse tail is not as bad as the CT signal suggests!

Kicker: ½ of the max. specified kicker strength

Magnetic field pulse. Integration suppresses the high-frequency noise.

Neil Bliss

Kicker: Full strength

0.007 Tm reached at about 28 kV

Kicker: Full strength

Fall-time is longer than what is needed.

Kicker: Field homogenity

Kicker Measurement Summary

- Full kicker strength 0.007 Tm reached at 28 kV.
- Ringing in the pulse tail does not seem to be as bad as the CT signal suggests.
- Work to do to optimise pulse fall-time to less than 50 ns

Septum Parameters

Max. beam deflection (injection)	65°
Max. beam deflection (extraction)	70°
Max. flux density in the gap	0.83 T
Excitation pulse (half-sine-wave)	25 µS
Peak excitation voltage	2 kV
Peak excitation current	9 kA
Repetition rate	20 Hz

Injection Septum Design

Horizontal plane section view of septum in vacuum chamber

Extraction Septum Design

Septum laminations

Extraction Septum

- In parallel we have been building and testing a dirty (not UHV clean) assembly
- Eddy current shield box also serves as compression feature to compact the laminations
- 97% packing factor achieved
- Good packing factor required to meet the flux specification

Septum pulse power supply

Septum magnet

First test result 7300A pulse

Septum Measurements

Same technique as kicker measurements: calibration followed by actual measurement

Much lower frequency; no problems with stray capacitances;

Septum Measurements

B=1T reached

with a 35 µs half-sine-wave pulse The pulse may need shortening to

The pulse may need shortening to 25 µs

No sign of saturation at 125% strength.

Septum Measurement Summary

Septum magnet flux reached B=1T (125%)

Detailed field mapping measurements in progress, some hardware required to conduct the measurements

Stray field measurements also in progress – adding some additional material most likely required – but where ? 1 – 2 mT could be more realistic than 0.1 mT

More work to do!!

Corrector Magnet Design

- Contract placed with Tesla Engineering scheduled delivery October 09
- 20 vertical correctors (Ring x 16, Injection line x 2, Diagnostics beamline x 2)
- 8 combined vertical/horizontal correctors (Injection line x 4, Diagnostics beamline x 4)

Strength: 1.609T.mm

Good field region (1%): ±16mm (H)

±11mm (V)

Vertical corrector magnets

Strength: 0.436T.mm (H); 0.403T.mm (V)

Good field region (1%): >± 20mm

Combined vertical/horizontal corrector magnets

Neil Bliss

DIAGNOSTICS

INJECTION LINE

INJECTION LINE

DIAGNOSTICS BEAMLINE

- All dipole and quadrupole magnets on site
- Correctors due end of October
- BPMs delivered from VG Scienta
- YAG screens due end of September from Kurt J Lesker UK
- Girder order placed on ESE UK, delivery end of October

Electron Beam Position Monitors

- The BPM electronics system has to deliver 50
 μm resolution over a large aperture
- Locally mounted coupler card amplifies and separates signals from opposite buttons in time, to give a 12nS delay between each. Signals combined and transmitted via a single high quality coax cable to....
-VME based detector cards located in rack room outside of shielded area.
- Status:- All elements of the detector and digitisation stages are designed. Contract has been placed to design the VME interface. A production prototype card will be available by mid Nov. Test on ALICE by end of Nov, followed by production run of 50 cards by end of Jan 2010.

Production Coupler due the end of Oct

RF Detector, Clock, Control & ADC

Other Diagnostics

- FNAL Collaboration design of Wall Current Monitor based on commercially available 'in flange' current transformer.
- In house design of wire scanners and YAG screen systems based on designs already manufactured for ALICE.

RADIO FREQUENCY

Cavity Construction

- Manufacture of prototype cavities and 20 production cavities completed by Niowave
- 16 delivered, 2 ready for waiting for input couplers and 2 ready for delivery
- High quality manufacture including electron beam welding of body to reduce distortion
- Chemical etching adopted to improve Q (Qo 18,500 to 20,400)

Cavities exceeds EMMA specification

Input Coupler
Times Microwave

100KW (pulsed) IOT

- Delivery in progress
- Installation on ALICE 25th Sep 3rd
 Oct

RF Distribution

Q-Par Angus

- Acceptance tests performed on the 27th May 2009
- System delivered 29th June 2009
- Installation in Jan 2010

Low Level RF

Instrumentation Technology

- Hardware delivered
- Software not delivered yet
- Critical issue to be resolved:
 - Synchronisation of the phase with the arrival of the beam

RING ASSEMBLY STATUS

Rack Room

Rack Build

Power Converter Racks

Control Station & Vacuum Racks

Summary

Off line build in progress Oct 2008 - Dec 2009

IOT Installation in ALICE Hall 25th Sep - 3rd Oct 2009

ALICE Shutdown 19th Oct - 15th Nov

Target is to have 4 of the 7 girder assemblies ready to be transported through the equipment door

Injection line ready for beam 7th December 2009

Further 3 girders to be installed Jan 2010

Full ring assembled by end of Jan 2010

Systems tests & commissioning February - mid March 2010

EMMA ring ready for beam mid March 2010

1st beams in to EMMA Mar 2010

Acknowledgements

All the team

- STFC
- Cockcroft Institute
- John Adams Institute staff
- UK Universities
- International Collaborators
- Commercial suppliers

ADDITIONAL SLIDES

EMMA Parameters & Layout

Energy range	10 – 20 MeV
Lattice	F/D Doublet
Circumference	16.57 m
No of cells	42
Normalised transverse acceptance	3π mm-rad
Frequency (nominal)	1.3 GHz
No of RF cavities	19
Repetition rate	1 - 20 Hz
Bunch charge	16-32 pC single bunch

EMMA Ring Cell

Long drift	210 mm
F Quad	58.8 mm
Short drift	50 mm
D Quad	75.7 mm

42 identical cells Cell length 395 mm

Neil Bliss EMMA Project Status Sept 2009

Location for diagnostic screen and vacuum pumping

EMMA Project Status Sept 2009

Neil Bliss

Cavity Design

Normal conducting single cell re-entrant cavity design optimised for high shunt impedance

Parameter	Value
Parameter	value
Frequency	1.3 GHz
Theoretical Shunt Impedance	2.3 ΜΩ
Realistic Shunt Impedance (80%)	2 M Ω
Qo (Theoretical)	23,000
R/Q	100 Ω
Tuning Range	-4 to +1.6 MHz
Accelerating Voltage	120 kV
Total Power Required (Assuming 30% losses in distribution	90 kW
Power required per cavity	3.6 kW