Studies related to the PRISM-FFAG

Akira SATO
Dept.of Physics, Osaka University

FFAG ${ }^{\prime}$ 09: International Workshop on FFAGs September 21-25, 2009
Fermilab, Batavia, IL

Contents

- Motivation of PRISM-FFAG
- Overview of R\&D results
- FFAG Design
- Magnet
- RF system
- 6-cell FFAG
- Phase rotation test
- PRISM Task Force (covered by Jaroslaw's talk)
- Study for FFAG ring cooler
- New Muon beamline(MUSIC) at Osaka Univ.
- Summary

Japanese staging plan of μ-e conversion

$$
B\left(\mu^{-}+A l \rightarrow e^{-}+A l\right)<10^{-16}
$$

- without a muon storage ring. (MECO-type)
- with a slowly-extracted pulsed proton beam.
- at the J-PARC NP Hall.
- for early realization (~2017)

The sensitivity is limited by backgrounds: pion induced electrons, decay in orbit electrons, and so on.

2nd Stage : PRISM/PRIME

$$
B\left(\mu^{-}+T i \rightarrow e^{-}+T i\right)<10^{-18}
$$

- with a muon storage ring.
- with a fast-extracted pulsed proton beam.
- need a new beamline and experimental hall.
- Ultimate search

A muon storage ring can solve the problem.

PRISM : Super-muon source
 PRIME : $\mu-\mathrm{N} \rightarrow \mathrm{e}-\mathrm{N}$ Search with PRISM

- Intensity : $10^{11}-10^{12} \mu \pm / \mathrm{sec}, 100-1000 \mathrm{~Hz}$
- Energy : $20 \pm 0.5 \mathrm{MeV}$ (=68 MeV/c)
- Purity : π contamination < 10-20

Phase rotation in PRISM-FFAG

- A technique of phase rotation is adopted.
- The phase rotation is to decelerate fast beam particles and accelerate slow beam particles by RF.
- To identify energy of beam particles, a time of flight (TOF) from the proton bunch is used.
- Fast particle comes earlier and slow particle comes late.
- Proton beam pulse should be narrow (< 10 nsec).
- Phase rotation is a wellestablished technique, but we need to apply this to a low energy muons ($\mathrm{P}_{\mu} \sim 68 \mathrm{MeV} / \mathrm{c}$) for stopping muon experiments.

Phase

Phase

Design of PRISM-FFAG

PRISM-FFAG

$\mathrm{N}=10$k=4.6
$\mathrm{F} / \mathrm{D}(\mathrm{BL})=6.2$$\mathrm{r} 0=6.5 \mathrm{~m}$ for $68 \mathrm{MeV} / \mathrm{c}$half gap $=17 \mathrm{~cm}$mag. size 110cm @ F center
Q Radial sector DFD Triplet($\theta_{\mathrm{F}} / 2=2.2 \mathrm{deg}$${ }^{\theta}=1.1 \mathrm{deg}$
Max. fieldF: 0.4T
D : 0.065Ttune
h: 2.73
Q $\mathrm{v}: 1.58$

- Large transverse acceptance
- Horizontal : 38,000 $\pi \mathrm{mm}$ mrad
- Vertical : 5,700 $\pi \mathrm{mm}$ mrad
- High field gradient RF system
- field gradient $\sim 170 \mathrm{kV} / \mathrm{m}$ ($\sim 2 \mathrm{MV} /$ turn)
- quick phase rotation ($\sim 1.5 \mu \mathrm{~s}$)
- large mom. acceptance (68MeV/c +- 20\%)

Expected phase rotation with PRISM-FFAG

The First PRISM-FFAG Magnet

Results of Field Measurements

The RF system

Field gradient of PRISM-FFAG

Proton Synchrotron RF System

How to realize the 4 MHz sawtooth RF

- Requirements on RF system for PRISM-FFAG
- high field gradient : >170kV/m @4MHz
- Sawtooth-RF
- Magnetic Alloy cores have been adopted
- $\mathrm{Q}<1$: enable to add higher harmonics
- large aperture is possible
- Adjust the frequency

- Solution 1 : cut core
- used in RF cores for J-PARC MR
- too expensive for PRISM-cores due to their size
- Solution 2 : hybrid RF system
- tested for J-PARC RCS
- can use for PRISM-cavities

Hybrid RF system

- Proposed by A. Schnase.
- Combination of MA cavity with a resonant circuit composed by inductor and capacitor.
- Developed for J-PARC RCS cavities.

$$
\begin{aligned}
& \mathrm{f}=1 / 2 \pi \sqrt{\mathrm{LC}} \\
& 1 / \mathrm{L}=1 / \mathrm{Lcore}+1 / \text { Lind } \\
& \mathrm{Q}=\mathrm{Rp} / \omega \mathrm{L} \\
& \quad \mathrm{Rp}: \text { shunt }
\end{aligned}
$$

J-PARC: add C and L to control Q and f PRISM : add L to control f

Hybrid RF system

3 Gap Cavity impedance, 6 RCS tanks

Parallel inductor for J-PARC

Inside of PRISM AMP

This will be tested in this year.

6-cell PRISM-FFAG

Demo. of Phase Rotation with α-particles

- FFAG-ring
- PRISM-FFAG Magnet x 6, RF x 1
- Beam : α-particles from radioactive isotopes
- ${ }^{241} \mathrm{Am} 5.48 \mathrm{MeV}(200 \mathrm{MeV} / \mathrm{c}) \rightarrow$ degrade to $100 \mathrm{MeV} / \mathrm{c}$
- small emittance by collimators
- pulsing by electrostatic kickers
- Detector : Solid state detector
- energy
- timing

Apparatus for the test of phase rotation

Comparison b/w data and simulation

Preliminary agenda.

Location

Day 1: Room 539 Blackett Laboratory
Day 2: Ron

Wednesday $1^{\text {st }}$ Juiy $\mathbf{2 0 0} \mathbf{9}$

Registration: 10.00 to $10: 30$, (Coffee at $10: 20$)

Session 1: 10.30 am

Welcome and Introduction to Muon-to-Electron Conversion and Session Chair: Y. Uchida

10:30 Welcome	10:35	Introduction to Physics of Muon-to-Electron
Conversion and COMET/PRISM experiments		11:35 Results and Status of PRISM-FFAG R\&D 12:35 Muon-to-Electron Conversion from the UK Y. Uchida

Session 2: 14:00 to 15:40

Towards Chair: TBC
14:00 Advanced FFAG for PRISM M Y. Mori 14:40 Magnetic Alloy Cavities (lecture) C. Ohmori 15:40 Coffee

Session 3: 16:00 to

Towards PRISM 2
Session Chair: J. Pasternak
16:00 FFAG Lattice with Insertion \quad S. Machida 16:40 New ideas of the muon phase rotation A. Sato
Session 4: 17:10 to 18:00
Discussion on Challenges in Injection/Extraction, Simulations, etc.
Session Chair: J. Pasternak
19:00 Dinner,
Thursday $2^{\text {nd }}$ July 2009
Session 5: 9:15 to 10:40
Hardware for FFAG
Session Chair: TBC

9:15 EMMA Hardware Stat | 9:15 | EMMA Hardware Status |
| :--- | :--- |
| 10:15 EMMA Commissioning | |

\qquad . Bliss 10:40 Coffee
Session 6: 11:00 to 13:00
Hardware for FFAG
Session Chair: TBC
11:00 ISIS Pulsed Power for Injection and Extraction
12:00 PRISM RF System
Session 7: 14:00 to 15:40
Recent Progress in FFAG Development
Session Chair:
14:00 Beam Extraction in Proton FFAG, PAMELA T. Yokoi 14:40 Discussion on Injection/Extraction, Matching, Simulations etc
15:40 Coffee

PRISM-FFAG Task Force

- The 1st new PRISM-FFAG workshop was held at Imperial College London, UK, 1st- 2nd July, 2009
- organized by J.Pasternak
- http://www.hep.ph.ic.ac.uk/muec/meetings/20090701/agenda.html
- The workshop aims to cover the technological challenges in realizing an FFAG based muon-toelectron conversion experiment which has a sensitivity of $<10^{-18}$
- Physics of Muon-to-Electron Conversion.
- Status of PRISM-FFAG.
- Beam dynamics, design and simulation studies for PRISM.
- Hardware developments for FFAG accelerators.
- Challenges of beam injection and extraction.
- Recent developments in FFAG accelerators.
- The Collaboration and PRISM Task Force are proposed in the workshop, and being organized and created. You are welcomed to join.
- injection/extraction, kicker design
- re-optimization of the PRISM-FFAG design
- possibility of new lattice

Muon cooling in the PRISM-FFAG

- the first attempt to study a racetrack FFAG ring cooler

Motivation of This Study

- The 6D-emittance reduction of a muon beam is essential for future neutrino factories and a muon collider. No realistic design for the muon cooling section, however, have been designed yet.
- A cooling section using a ring (ring cooler) would be more cost effective than that of with a straight channel, science a number of RF and absorbers would be reduced.
- Some designs for the ring cooler have been proposed. These designs have some issues must be solved:
- injection/extraction and its kicker system,
- window of absorbers and RFs.
- This study is the first attempt to design a realistic ring cooler using the following ideas.
- racetrack FFAG
- FFAG has a large transverse acc. and dispersion in horizontal.
- superfluid helium wedge absorbers

Ionization Cooling in FFAGs

- There are few simulation studies for the ionization cooling in FFAG rings. Needs more studies.
- in a nufact-j FFAG ring
- (superconducting FFAG for 0.3-1.0GeV/c muon acceleration)
- H Schonauer, J. Phys. G: Nucl. Part. Phys. 29 (2003) 1739
- H. Schonauer, NIM A503 (2003) 318-321
- Thin absorbers in the symmetry plane of all RF cavity gaps were inserted to the ring.

Material thickness	Energy gain per turn (max.) (MeV)	Muon transmission	Cooling factor of rms normalized emittance		Figure of merit: muon transmission/cooling	
			Horizontal	Vertical	Horizontal	Vertical
None	62.7	0.965	1	1	0.965	0.965
Be 7 mm (old refe Nufact'01)	25	0.91	0.959	0.856	0.944	1.057
$\begin{aligned} & \text { Be } 7 \mathrm{~mm} \\ & \quad \text { (new reference) } \end{aligned}$	25	0.91	0.985	0.909	0.928	1.006
$\mathrm{LiH}_{2} 13.3 \mathrm{~mm}$	20	0.89	0.892	0.799	0.992	1.107
$\mathrm{LiH}_{2} 10.6 \mathrm{~mm}$	30.3	0.93	0.974	0.883	0.65	1.048
Li 20 mm	21.4	0.89	0.825	0.756	1.085	1.184
Li 10 mm	40.6	0.95	0.95	0.91	0.991	1.042

- in the PRISM-FFAG ring by H.Kirk ???

New Ideas for Scaling-FFAG

- Recently, some new ideas for the scaling FFAG have been proposed by Y.Mori and S.Machida et. al.
- Insertion of straight section into the FFAG ring
- Dispersion suppress in a FFAG ring/channel.

by Y.Mori, NuFact09
- These ideas would be useful for inj/ext of the FFAG ring cooler.

New Ideas for Scaling-FFAG (cntd.)

APPLICATION: PRISM

Racetrack FFAG for Muon Cooling

Just an illustration for a conceptual design
matching section
straight section

Racetrack FFAG for Muon Cooling

Just an illustration for a conceptual design

PRISM-FFAG Based Ring Cooler

- This presentation shows a result of a ring cooler based on PRISM-FFAG lattice as the first trial of my study. This is a simulation study for the cooling section of the racetrack FFAG cooler.

Circumstance (m)	38
Number of cells	10
Field index k	4.6
F/D ratio	6.0
Maximum field (T)	1.6
Central momentum (MeV/c)	308
Magnet type	DFD triplet
Magnet aperture	$\mathrm{H}: 100 \mathrm{~cm} \times \mathrm{V}: 30 \mathrm{~cm}$
Horizontal tune	2.73
Vertical tune	1.58

The magnetic field of the original PRISM-FFAG is multiplied by 4.0.

Param of PRISM-FFAG Based Ring Cooler

Circumstance (m)	38
Total number of cells	10
Cell with RF cavities and absorbers	8
Central momentum Po (MeV/c)	308
Number of wedge absorbers per cell	4
Wedge thickness on ro for Po(cm)	8.672
Wedge opening angle (degree)	3.86
Absorber material	LH 2
Number of cavities per cell	4
Cavity length (cm)	28.75
RF gradient (MV/m)	8.709

Beta Functions and Dispersion

Cooling Simulation

- Tracking code: g4beamline-1.16 on Mac OS X
- with stochastic processes
- without decay
- physics model: QGSP_BIC
- RF cavities were simulated as electrostatic parallel plates.
- $5 \times 10^{4} \mu^{+}$have been tracked.

Initial Beam Condition

Events for $10 \mu^{+}$tracked up to 15 turns

Result

Initial

after 4 turns
after 8 turns
after 12 turns

No cooling effect is observed with PRISM-FFAG based ring. Since, probably, β function is too large, angler acceptance is not enough. Need new lattice design.

Performance of the Orig. PRISM-FFAG

Horizontal Acceptance
$40000 \pi \mathrm{~mm}$ mrad

Vertical Acceptance
$6500 \pi \mathrm{~mm}$ mrad

MUSIC project

Muon beam is coming to the RCNP, Osaka-Univ.

MUSIC (=MUon Science Innovative Commission)

muon yield estimation

0.4 kW (400MeV, $1 \mu \mathrm{~A}$ protons) 10^{9} muons/sec (for MUSIC)

We are also considering to finalize the 10 -cell PRISM-FFAG R\&D using the muon beams in the MUSIC project.

Pion Capture System

- Inject proton beam from the gap of coils into solenoid magnet
- Capture backward-emitted pions in 3.5T solenoid field

Summary

- PRISM provides a solution to improve the μ-e conv. sensitivity less than 10^{-17} adopting a muon storage ring, which make mono-energetic and pure muon beam. A staging scenario of mu-e conversion experiment (COMET - PRISM) was proposed in Japan.
- We had R\&D program on the muon storage ring from 2003 to 2009. Many successful outcomes were achieved.
- large aperture FFAG,
- high field gardened RF system
- 6-cell FFAG and phase rotation test.
- Hybrid RF to realize the 4 MHz sawtooth (this year)
- Prospects
- The collaboration and task force for the PRISM-FFAG were created. We will continue to study the PRISM-FFAG to realize the ultimate μ-e conv. experiment.
- PRISM-FFAG based ring cooler have been studied. New lattice design is necessary to realize a racetrack FFAG ring cooler.
- A new muon beamlin (MUSIC) is now under construction at RCNP, Osaka Univ., and PRISM-FFAG study can be continue with the muon beam.

