Advancement of Scaling FFAG

Y. Mori

Kyoto University, Research Reactor Institute

Contents

- Features of scaling FFAG accelerator
- Scaling law
 - → Ring
 - Linear line
- Lattice exercise
 - Insertion/Matching
 - → Dispersion suppressor
- Acceleration
 - Stationary bucket: fixed frequency RF

Scaling FFAG

Scaling FFAG

- FFAG: Fixed Field Alternating Gradient
 - → Scaling: zero-chromaticity: constant tunes

Scaling FFAG

- FFAG: Fixed Field Alternating Gradient
 - Scaling: zero-chromaticity: constant tunes
- Scaling conditions for zero chromaticity
 - Orbit similarity for different beam momentum
 - Constant field index for any orbits

POP(2000)

FAG-KURRI(2009)

Scaling law I circular ring

Global coordinate: Cylindrical coordinate

Betatron eqs.

$$\frac{d^2x}{d\theta^2} + \frac{r^2}{\rho^2} \left(1 - K\rho^2\right) x = 0$$

$$\frac{d^2z}{d\theta^2} + \frac{r^2}{\rho^2} \left(K\rho^2\right) z = 0$$

- Scaling condition: zero-chromaticity

sine qua nons:
$$\frac{d}{dp} \left[\frac{r^2}{\rho^2} (1 - K\rho^2) \right] = 0 \text{ and } \frac{d}{dp} \left[\frac{r^2}{\rho^2} K\rho^2 \right] = 0$$

- sufficient conds.

B-field
$$\begin{cases} \frac{d(r^2/\rho^2)}{dp} = 0 \\ \frac{d(K\rho^2)}{dp} = 0 \end{cases} \begin{cases} r \propto \rho \\ \frac{r}{B} \left[\frac{\partial B_z}{\partial x} \right]_{z=0} = k \end{cases} \qquad B_z = B_0 \left(\frac{r}{r_0} \right)^k f(\theta)$$

$$B_z = B_0 \left(\frac{r}{r_0}\right)^k f(\theta)$$

Scaling FFAG ring

Scaling FFAG ring

- Pro/
 - Fixed field & Strong focusing
 - Zero chromaticity
 - constant betatron tunes → no-resonance crossing
 - Large acceptance (longitudinal & transverse)

Scaling FFAG ring

Pro/

- Fixed field & Strong focusing
- Zero chromaticity
 - constant betatron tunes → no-resonance crossing
- Large acceptance (longitudinal & transverse)
- Con/
 - Relative large dispersion:Orbit excursion is large.
 - Large aperture magnet
 - Large aperture rf cavity → Low frequency
 - Short straight section
 - Injection/Extraction difficulties → Kicker/Septum needs large apertures.
 - Available space for rf cavity is limited.

Scaling FFAG linear line

- Is it possible to make a linear FFAG straight line?
 - keeping a scaling law: zero chromaticity
 - → reducing dispersion: dispersion suppressor
 - making a good match with ring: insertion
- Magnetic field configuration for FFAG linear line?
 - → Obviously not:

$$B = B_0 \int_{0}^{k} f(\theta)$$

Scaling condition II linear (straight) transport line

Betatron eqs.

$$\frac{d^2x}{dy^2} + \frac{1}{\rho^2} \left(1 - K\rho^2\right) x = 0$$
$$\frac{d^2z}{dy^2} + \frac{1}{\rho^2} \left(K\rho^2\right) z = 0$$

- Scaling conditions:zero-chromaticity

$$\begin{cases}
\frac{d(1/\rho^2)}{dp} = 0 \\
\frac{d(K\rho^2)}{dp} = 0
\end{cases}
\begin{cases}
\rho = const. \\
\frac{1}{B} \left[\frac{\partial B_z}{\partial x} \right]_{z=0} = \frac{n}{\rho}
\end{cases}$$

Magnetic field

$$B_z = B_0 \exp\left[\frac{n}{\rho}x\right]$$

$$\left[\lim_{r_0\to\infty} \left(\frac{r}{r_0}\right)^k = \lim_{r_0\to\infty} \left[\left(1 + \frac{x}{r_0}\right)^{\frac{r_0}{x}} \right]^{\frac{x}{r_0}k} = \lim_{r_0\to\infty} \left[\left(1 + \frac{x}{r_0}\right)^{\frac{r_0}{x}} \right]^{\frac{n}{\rho}x} = \exp\left(\frac{n}{\rho}x\right) \right]$$

Scaling linear line

- Example (JB. Lagrange)
 - Perfect scaling(zero-chromatic) FFAG linear transport line
 - → proton 80-200MeV

Table 1: Tracking parameters

Length of the magnets
Drift 40 cm

Kinetic energy range 80 to 200 MeV (proton)
Field index 17

Local curvature radius 2.1 m
Step size 1 mm

Phase advances:

horizontal μ_x 104.8 deg. vertical μ_z 112.5 deg.

B-field

$$B_z = B_0 \exp\left[\frac{n}{\rho}x\right]$$

Dispersion suppressor

- Dispersion suppressor (Planche, Lagrange, Mori)
 - \neg successive π -cells in the horizontal plane can suppress the dispersion.

$$X_{tot} = X_1 - X_0 = \frac{1}{n/\rho} \ln\left(\frac{P_1}{P_0}\right) \qquad x = \ln\left(\frac{P_1}{P_0}\right) \left(\frac{\rho_0}{n_0} - \frac{\rho_1}{n_1}\right)$$

Insertion Matching

btw. ring & straight line

B(closed orbit) matching condition

$$\left(1 + \frac{x}{r_m}\right)^{k+1} = \exp\left(\frac{n}{\rho}x\right)$$

ring

linear line

$$\frac{k+1}{r_m} = \frac{n}{\rho}$$

← 1st order

CO mismatch higher order error:

→ smaller for larger ring

Example: 150MeV p-FFAG ring(KURRI) with insertion

Advanced scaling FFAG

 $\underset{\text{insertion}}{\operatorname{insertion}}^{r_{m}} \rho$ matching

$$B_z = B_0 \exp\left[\frac{n}{\rho}x\right]$$
 linear straight

dispersion suppressor

$$B = B_0 \left(\frac{r}{r_0}\right)^k$$

Fring
$$B = B_0 \left(\frac{r}{r_0}\right)^k \qquad x = \ln\left(\frac{P_1}{P_0}\right) \left(\frac{\rho_0}{n_0} - \frac{\rho_1}{n_1}\right)$$

Muon phase rotation ring:PRISM

• J.B. Lagrange (talk at this workshop)

 π section for dispersion suppressor

PRISM ring (without straight parts) with dispersion suppressor and existing PRISM magnets.

Muon accelerator for neutrino factory

Table 1: 3 to 10 GeV Muon Ring Parameters

Number of RF cavities

Lattice type	scaling FFAG - double beam
Mean radius	120 m
Number of cells	72
Field index k	145
Packing factor	0.7
B_{max}	2.6 T
Horiz. phase adv. per cell	93.2 deg.
Verti. phase adv. per cell	30.2 deg. Harmonic Number Jump
Mean RF frequency	$\sim 400 \text{MHz} \rightarrow \text{require higher harmonics}$
RF peak voltage	1.6 GV/tum

Muon accelerator for neutrino factory

Muon accelerator for neutrino factory

Application: Gantry for C-beam therapy

• Gantry design C-beam therapy: T.Furukawa et al.,:Nucl. Instr.Meth. PRB 266(2008)2186-2189

Gantry for spot scanning

- 3-D conformal spot scanning
 - Large momentum acceptance required in gantry lattice
 - $250 \text{MeV/c} <-> 400 \text{MeV/c} (p/p_0~1.3)$
 - In ordinary gantry lattice, momentum acceptance is small (<few %)
- FFAG lattice has very large acceptance!
- Non-scaling FFAG lattice proposed by Trbojevic et al.)
- Scaling FFAG lattice with dispersion suppressor

Gantry with scaling FFAG lattice

Energy(max.)

400MeV/c (C)

• k(arc)

~12

• B(max.)

1.9 T

Orbit excursion

14cm (250-400MeV/c)

RF acceleration

- Longitudinal beam dynamics in scaling FFAG
 - Orbit lengths are scaled as beam momentum

$$r \propto p^{\frac{1}{k+1}}; \alpha_p = \frac{1}{k+1}$$

- Beam acceleration in scaling FFAG accelerator
 - Variable rf frequency
 - → Fixed rf frequency
 - Stationary bucket
 - Harmonic number jump

Fixed rf frequency

- Stationary bucket (EPAC06-TUXFI01)
 - ¬ Constant & small enough phase-slip → large energy gain
 - relativistic particle
 - constant Momentum compaction

$$\eta = \frac{1}{\gamma^2} - \alpha \cong -\alpha = -\frac{1}{k+1}$$

→ Adequate for scaling FFAG

Stationary bucket

- Longitudinal beam dynamics in scaling FFAG
 - Hamiltonian is given in analytical form.
 - E.Yamakawa (in this workshop)
- Acceleration from low energy (non-relativistic) to high energy (relativistic) with a fixed-frequency rf becomes possible.

Stationary bucket

$$H = 2\pi m_0 c^2 \left[\frac{(\gamma_s^2 - 1)^{\lambda}}{2\gamma_s} \frac{(\gamma^2 - 1)^{-\lambda + 1}}{(1 - \lambda)} + \gamma \right] + e^{\frac{V_{rf}}{h}} f_0 \cos \phi, \lambda = \frac{k}{2(k+1)}$$

Summary

- Advanced scaling FFAG scheme has been developed.
- Scaling linear system requires,
 - → Scaling law
 - ¬ Insertion/Matching
 - → Dispersion suppressor
- Race-track FFAG ring is in reality.
 - → Muon acceleration → Neutrino Factory(T. Planche)
 - \neg Muon phase rotation \rightarrow PRISM(J.B. Lagrange)
- Acceleration with fixed-frequency RF
 - Acceleration with Stationary bucket (E. Yamakawa)