Giboudot Yoel (Cockcroft Institute), Andy Wolski (Liverpool University,CI) FFAG 09

Tracking studies in EMMA with Dynamical Map

Contents

- Lattice representation
- Dynamical Map computation.

Application to tracking results

Philosophy of the study: Description of a lattice

- Hard egde model
- Hard edge model with Fringe Field

Magnetic Field Map (e.g.OPERA)

Tracking Example in Hard Edge Model : Random Sextuple Component Effect in EMMA magnets

Quite Complex magnetic Field:

Magnetic Field Map Computation

What do we do with this Field Map?

- Zgoubi will read the map, compute the derivative of the Field and track within for each particle for each cell.
- We can process this Field maps to output an analytical (Taylor expansion) solution for the particle dynamics.

Magnetic Field in Analytical Form

23/Jul/2008 09:26:20
Map contours: BX $T^{\text {Map contours: } B X}$ $\int_{1}^{1.000000 \mathrm{E}-001}$

20
T

.

Potential Vector

Magnetic Field Values on the grid given by OPERA

$$
\begin{gathered}
B_{\rho}=\sum_{m n} \begin{array}{c}
\text { Fast Fourier } \\
\text { Transform }
\end{array} \\
B_{y}^{\prime}=\sum c_{m n}\left(n k_{z} \rho\right) \sin (m \phi) \cos \left(n k_{z} z\right) \\
\begin{array}{l}
\text { Cylindrical to } \\
\text { cartesian conversion }
\end{array} \\
\text { Potential Vector }\left(m k_{\chi} \chi\right) \cosh \left(k_{y} y\right) \cos \left(n k_{z} z\right) \\
A(x, y, z)
\end{gathered}
$$

Dynamical Map or Taylor Map (higher order transfer matrix)

- Symplectic Integrator : suitable for Hamiltonian defined problem and s-dependent magnetic field

Explicit Higher Order Symplectic Integrator for s-Dependent Magnetic Field, Y. Wu, a E. Forest,y and D. S. Robinz (2001)

$$
\begin{aligned}
\mathcal{M}_{2}(\Delta \sigma)= & \exp \left(:-\frac{\Delta \sigma}{2} p_{z}:\right) \exp \left(: \frac{\Delta \sigma}{2} a_{z}:\right) \exp \left(:-\frac{\Delta \sigma}{2}\left(-\delta+\frac{p_{x}^{2}}{2(1+\delta)}\right):\right) \\
& \mathcal{A}_{y} \exp \left(:-\Delta \sigma \frac{p_{y}^{2}}{2(1+\delta)}:\right) \mathcal{A}_{y}^{-1} \exp \left(:-\frac{\Delta \sigma}{2}\left(-\delta+\frac{p_{x}^{2}}{2(1+\delta)}\right):\right) \exp \left(: \frac{\Delta \sigma}{2} a_{z}:\right) \exp \left(:-\frac{\Delta \sigma}{2} p_{z}:\right)
\end{aligned}
$$

Simple Integrator : Runge Kutta method

Dynamical Map for an electron at 15 MeV

COEFFICIENT	ORDER EXPONENTS			
-. $1526960120987588 \mathrm{E}-01$	\bigcirc	00	00	
0.3401128273867607	1	10	00	
0.1642237907235073	1	01	0	
$0.1349437018669432 \mathrm{E}-01$	1	00	0	0
COEFFICIENT	ORDER EXPONENTS			
-. 1662658740250797	0	00	00	
-7.346211164087502	1	10	00	
-. 6069240210898136	1	01	0	0
-.2793363824327076E-01	1	00	00	0
COEFFICIENT	ORDER EXPONENTS			
1.807979732539481	1	00	10	
0.4618723192508760	1	00	0	0
COEFFICIENT	ORDER EXPONENTS			
9.629811976855628	1	00	10	0
3.013166294762159	1	00	01	
COEFFICIENT	ORDER EXPONENTS			
-. $1018398440130244 \mathrm{E}-02$	0	00	00	
-.8963190423569946E-01	1	10	00	0
-. $3602689454773938 \mathrm{E}-02$	1	01	0	
1.000000000000000	1	00		
$0.1767384323557966 \mathrm{E}-02$	1	00	00	0
COEFFICIENT	ORDER EXPONENTS			
1.000000000000000	1	00	00	0

And so what ?

Dynamical Map are light (regarding memory) and really fast and easy to track in.

But they have a finite range of validity: Can they accurately simulate large excursions?

Are they really suitable for FFAG...?

"Sampling" of the excursion

Computing of dynamical map for each energy.

Closed Orbit calculation

Zgoubi result

Dynamical Map result

Tune and Time of Flight

Tune and Time of Flight

Betatron Motion in Dynamical Maps

Energy Deviation in Dynamical Maps

Small pause

What happens for the "in between" energies?

Dynamical Map for an electron at 15 MeV

COEFFICIENT	ORDER EXPONENTS			
-. $1526960120987588 \mathrm{E}-01$	\bigcirc	00	00	
0.3401128273867607	1	10	00	
0.1642237907235073	1	01	0	
$0.1349437018669432 \mathrm{E}-01$	1	00	0	0
COEFFICIENT	ORDER EXPONENTS			
-. 1662658740250797	0	00	00	
-7.346211164087502	1	10	00	
-. 6069240210898136	1	01	0	0
-.2793363824327076E-01	1	00	00	0
COEFFICIENT	ORDER EXPONENTS			
1.807979732539481	1	00	10	
0.4618723192508760	1	00	0	0
COEFFICIENT	ORDER EXPONENTS			
9.629811976855628	1	00	10	0
3.013166294762159	1	00	01	
COEFFICIENT	ORDER EXPONENTS			
-. $1018398440130244 \mathrm{E}-02$	0	00	00	
-.8963190423569946E-01	1	10	00	0
-. $3602689454773938 \mathrm{E}-02$	1	01	0	
1.000000000000000	1	00		
$0.1767384323557966 \mathrm{E}-02$	1	00	00	0
COEFFICIENT	ORDER EXPONENTS			
1.000000000000000	1	00	00	0

Tune with energy deviation in Dynamical Maps

First conclusion:

- Each dynamical map computed for a different energy seems to be precise for a rather big energy deviation (compare to its reference energy).
- One has to check the time of flight behaviour.

So Let's use dynamical maps with its advantages...

EMMA degrees of Freedom

Vertical Tune per cell versus Horizontal Tune per cell with various lattice configuration

Four degrees of freedom

Let's compute them separetly...

Interpolation of each coefficents of the dynamical map.

I COEFFICIENT ORDER EXPONENTS 10.960863315922732 1. 1. 0. 0. 0 . 0 .

Interpolation of each coefficents of the dynamical map.

I COEFFICIENT ORDER EXPONENTS 10.960863315922732 1. 1. 0. 0. 0 . 0 .

Interpolated map for
 af=1.2,ad=0.81

Interpolation of each coefficents of the dynamical map.

I COEFFICIENT ORDER EXPONENTS 10.960863315922732 1. 1. 0. 0. 0.0.
20.24570344637953601 1. 0. 1. 0. 0. 0.

Interpolated map for af $=1.2, a d=0.81$

Interpolation of each coefficents of the dynamical map.

Interpolated map for
af=1.2,ad=0.81

I COEFFICIENT ORDER EXPONENTS
$10.2792904796322659 \mathrm{E}-150000000$
20.96166330787603271100000
$30.2458996365583791 \quad 1010000$
4 -.8284614849871832E-02 1000001
54.8898655072984042200000
61.7368357386463542110000
70.16913145444705922020000
81.9571236556311332002000
90.54087362117282222001100
$100.8680681485716765 \quad 2100001$
11 -.8088449008131963E-02 2010001
$120.6092375459177638 \mathrm{E}-012000200$
$130.4192957225149813 \mathrm{E}-022000002$

Within 5% agreement to the $3^{\text {rd }}$ order.

EMMA on line model

Thanks to F.Meot, B.Shepherd and the EMMA team.

Thanks for your attention

EMMA tune measurement

