Fast Integer Resonance Crossing in a Scaling FFAG

A. Osanai, Y. Ishi, Y. Kuriyama, Y. Mori, T. Uesugi*, Kyoto University Research Reactor Institute (KURRI)

Purpose

To verify experimentally

Integer resonance can be crossed, when the crossing speed is high enough.

Injector FFAG in KURRI

- Variable k, by means of 32 trim-coils
 - --> Hori. tune is controllable
 - --> easy to demonstrate resonance crossing
- Induction acceleration
 - --> No longitudinal focus,
 - --> no energy oscillation, which affects the horizontal betatron oscillations

Tune Variation

Without exciting trim-coils,

Qx~~1, but depending on E

(Crossing speed)

= 0.0024/kev * (Accel. Voltage) < 0.0084/turn

First Harmonic Force

was applied by 'Error field clamps' which has wider gap than the others.

* Effects of accelerations at two gaps work in counter-phase when Qx=~ 1.

Observing Coherent Oscillations

Elapsed time was measured at different radius

then

What is expected

What is expected

Coherent oscillations will be observed

Experimental Results

A part of beam survived after resonance crossing!

Dependence on Crossing speed

No difference in the final amplitude?

It's possible because

Final Amplitude depends on Initial Conditions

$$\frac{d^2x}{d\phi^2} + \nu(\phi)^2x = f\sin(n\phi)$$

General Solution

$$x(\phi) = \underbrace{A(x_0, x_0'; \phi)}_{\bullet} + \underbrace{S(\phi)}_{\bullet}$$

Solutions of homogeneous eq.;
Oscillating in freq v,
Little resonant blow up,
Initial amplitude, phase ..
If this part is not negligible

A solution of inhomogeneous eq.; Oscillating in freq v, Big resonant blow up

Phase difference?

- . In phase --> Maximum amplitude growth |S|+|A|
- . Counter phase --> Minimum growth |S|-|A|

Maximum Amplitude Growth (Simulation)

Worst cases of simulations with different initial phase

- simul. (single kick approx. of driving force)
- model (field err) / sqrt(crossing speed)

Summary

- Fast crossing of Qx=1 resonance has been examined in Injector FFAG of KURRI.
- The beam survived after the crossing, because of the fast tune variation (and large horizontal acceptance).
- The measured oscillation was reproduced by Runge-Kutta simulations.
- Simulated amplitude growth was proportional to 1/sqrt(dQ/dt)