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Motivations

2

Use the large transverse acceptance of scaling FFAG 
lattices

while using constant RF frequency acceleration to reach 
high accelerating gradient.
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Motivations

3

Use the large transverse acceptance of scaling FFAG 
lattices

while using constant RF frequency acceleration to reach 
high accelerating gradient.

Harmonic number jump 
acceleration

Stationary bucket 
acceleration!

Possible with either:

or
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Outline

I. Lattice for harmonic number jump acceleration.
1- Reminder about harmonic number jump acceleration.
2- Simultaneous μ- and μ+ acceleration: need for double 
beam lattice.
3- Issue of the excursion: need dispersion suppressors!
4- Lattice example and 4D tracking results.

II. Lattice for stationary bucket acceleration.
1- Reminder about stationary bucket acceleration.
2- Lattice details and tracking results.

4
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Scaling FFAG lattices for

Harmonic number jump acceleration

Part I
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harmonic number jump acceleration

To jump one harmonic every turn: Ti+1 − Ti =
1

fRF

6
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harmonic number jump acceleration

To jump one harmonic every turn:

7

Energy gain per turn must follow: ∆Ei =
1

fRF ·
[

∆T
∆E

]
Ei

Figure 1 - Revolution time as a 
function of particle energy in the 
case of a 3 to 10 GeV scaling FFAG 
ring, with k = 145 and average 
radius = 120 m.

Ti+1 − Ti =
1

fRF



Scaling FFAG Lattices For Muon Acceleration                                                                                   T. Planche - FFAG09 - Sept. 2009

HNJ with cavities distributed around the ring

Figure 2 - N cavities 
homogeneously 

distributed around the 
ring.

Assuming that the initial number of 

harmonic h0 is large we get(*):

fk ≈ f0(1−
1
h0

· k

N
)

Every cavity working at a constant 

frequency fk but the frequency has to 
be tuned to a slightly different value!

μ+ and μ- beams cannot be accelerated 
simultaneously if they circulated in 
opposite directions...

8

(*)look at the 
proceedings of PAC’09 
for all details.
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Need for a double beam lattice

A solution to circulate a particle and its antiparticle 
in the same direction in a scaling FFAG ring is to use 
a FD-symmetric lattice:

Figure 3 - Double beam FFAG lattice (k = 145). Closed orbits of μ+ and μ− circulating in the 
same direction. Results are obtained from Runge-Kutta stepwise tracking in hard-edge field.

9
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need for dispersion suppressor insertions!

Ti+1 − Ti =
1

fRF
Harmonic jump condition:

In the same time:
∆Ci

βc
= Ti+1 − Ti

In case of highly relativistic particles:

average excursion = λRF · Nturns

2π

10

∆Ri ≈
c

2πfRF
=

λRF

2π

Need for 
excursion 

reduced areas!
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Dispersion suppressor with FFAG 
magnets

k1 k2 k3 k2 k1

with
2

k2 + 1
=

1
k1 + 1

+
1

k3 + 1

11
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3 to 10 GeV muon double beam FFAG + excursion 
reduced areas

Figure 4 - Schematic view of a 3 to 
10 GeV double beam muon FFAG ring 
with 4 excursion reduced insertions.

12

Bmax 3 T
Horizontal tune 23.52
Vertical tune 7.12
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3 to 10 GeV muon double beam FFAG + excursion 
reduced areas

Table 2 - Ring main cells 
parameters

13

Mean radius 120 m
Number of cells 4× 11
Cell opening angle 4.5 deg.
Field index k 145
Bmax 3 T
Horiz. phase adv. per cell 82.1 deg.
Vert. phase adv. per cell 31.8 deg.

Figure 4 - Schematic view of a 3 to 10 
GeV double beam muon FFAG ring 

with 4 excursion reduced insertions.
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3 to 10 GeV muon double beam FFAG + excursion 
reduced areas

Table 2 - 1st dispersion 
suppressor 

14

Mean radius 120 m
Number of cells 4× 4
Cell opening angle 4.3 deg.
Field index k 183.6
Bmax 3 T
Horiz. phase adv. per cell 90 deg.
Vert. phase adv. per cell 27.6 deg.

Figure 4 - Schematic view of a 3 to 10 
GeV double beam muon FFAG ring 

with 4 excursion reduced insertions.
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3 to 10 GeV muon double beam FFAG + excursion 
reduced areas

Table 2 - 1st dispersion 
suppressor 

15

Mean radius 120 m
Number of cells 4× 4
Cell opening angle 3.34 deg.
Field index k 307.7
Bmax 3 T
Horiz. phase adv. per cell 90 deg.
Vert. phase adv. per cell 20.4 deg.

Figure 4 - Schematic view of a 3 to 10 
GeV double beam muon FFAG ring 

with 4 excursion reduced insertions.
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3 to 10 GeV muon double beam FFAG + excursion 
reduced areas

Table 2 - 1st dispersion 
suppressor 

16

Mean radius 350 m
Number of cells 4× 8
Cell opening angle 1.2425 deg.
Field index k 1168.6
Bmax 3 T
Horiz. phase adv. per cell 64.6 deg.
Vert. phase adv. per cell 12.6 deg.

Figure 4 - Schematic view of a 3 to 10 
GeV double beam muon FFAG ring 

with 4 excursion reduced insertions.
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3 to 10 GeV muon double beam FFAG + excursion 
reduced areas

17

Figure 5 - μ- closed orbits at 3, 6 and 10 
GeV.

k=145

k=183.6

k=307.7

k=1168.6
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3 to 10 GeV muon double beam FFAG + excursion 
reduced areas

18

Figure 6 - μ- (red) and μ+ (green) closed 
orbits at 3, 6 and 10 GeV.

k=145

k=183.6

k=307.7

k=1168.6
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Asymmetry between μ- and μ+ behavior 

k=145

k=183.6

k=307.7

k=1168.6
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Asymmetry between μ- and μ+ behavior 

X

X’
In dispersion 

suppressor cells: 
same amplitude 

but different beta 
function at the 
matching point!

k=145

k=183.6

k=307.7

k=1168.6
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μ-: matching done at the center of F magnets

Study of linear parameters using Runge-Kutta stepwise 
tracking in soft edge field model:

21

Figure 7 - μ- Tune variation between 3 
and 10 GeV in the latt ice with 
insertions (from stepwise tracking in a 
soft edge field model).
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μ-: matching done at the center of F magnets

Study of linear parameters using Runge-Kutta stepwise 
tracking in soft edge field model:

Figure 8 - μ- : Horizontal beta function at 6 
GeV (quarter of a turn).

22

Figure 9 - μ- : Vertical beta function at 6 
GeV (quarter a turn).
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Figure 10 - μ- : Longitudinal phase space 
showing a 6 turns acceleration cycle from 3 to 
10 GeV with an initial beam 4D emittance of 
0.2 eV.sec × 30 000 π.mm.mrad.

Figure 11 - μ- : Horizontal phase space 
showing the injected beam profile (red) and 
the same beam after a 6 turns acceleration 
cycle (green) with (4D emittance of 0.2 eV.sec 
× 30 000 π.mm.mrad).

4D tracking results: RF frequency = 400 MHz,  peak 

voltage 2GV/turn.

μ-: matching done at the center of F magnets
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μ+: matching done at the center of D magnets

Study of linear parameters using Runge-Kutta stepwise 
tracking in soft edge field model:

24

Figure 12 - μ+ Tune variation between 3 
and 10 GeV in the latt ice with 
insertions (from stepwise tracking in a 
soft edge field model).
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μ+: matching done at the center of D magnets

Study of linear parameters using Runge-Kutta stepwise 
tracking in soft edge field model:

Figure 13 - μ+ : Horizontal beta function at 
6 GeV (quarter of a turn).

25

Figure 14 - μ+ : Vertical beta function at 6 
GeV (quarter a turn).
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μ+: matching done at the center of D magnets

Horizontal acceptance of about 40 000 π.mm.mrad 6 GeV.

26

Figure 15 - μ+ : horizontal phase space 
showing 5 particles tracked over 100 turns 

(a fixed energy = 6 GeV).
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4D tracking results: 

Tried 3 to 10 GeV acceleration cycle
(with RF frequency = 400 Hz,  peak voltage 2GV/turn)

Particle lost on collimator even for 
small transverse emittance...

μ+: matching done at the center of D magnets
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Summary on harmonic number jump

Works well...
* Large transverse acceptance.
* Large longitudinal acceptance, and no emittance 
degradation during acceleration.
* Excursion reduction of a factor 3 is already possible.
* Possible with RF frequency in the 200 MHz to 400 MHz 
range.

...But not yet for both charge in the 
same time.

28
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Part II

Scaling FFAG lattices for

Stationary bucket acceleration
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stationary bucket acceleration

Stationary bucket acceleration principle:

Figure 16 - Longitudinal phase space showing a 6 
turns acceleration cycle (in red) as well as the 

equi-hamiltonian lines (in black).
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Lattice example with 
super-periodicity of 6:

stationary bucket acceleration

Bmax 3 T
Horizontal tune 36.8
Vertical tune 11.02

Figure 17 - Schematic view of a 3 to 10 GeV muon 
FFAG ring with 6 “almost-straight” insertions.
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Lattice for stationary bucket 
acceleration

Mean radius 90 m
Number of cells 6× 21
Cell opening angle 2.6 deg.
Field index k 500
Bmax 3 T
Horiz. phase adv. per cell 85.9 deg.
Vert. phase adv. per cell 19.3 deg.

Figure 17 - Schematic view of a 3 to 10 GeV muon 
FFAG ring with 6 “almost-straight” insertions.
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Lattice for stationary bucket 
acceleration

Mean radius 360 m
Number of cells 6× 6
Cell opening angle 0.9 deg.
Field index k 2003
Bmax 3 T
Horiz. phase adv. per cell 67.7 deg.
Vert. phase adv. per cell 42.2 deg.

Figure 17 - Schematic view of a 3 to 10 GeV muon 
FFAG ring with 6 “almost-straight” insertions.
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Lattice for stationary bucket 
acceleration

Figure 18 - Horizontal beta function at 
6 GeV (1/6 of a turn).

Figure 19 - Vertical beta function at 6 GeV 
(1/6 of a turn).
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Tracking results
4D tracking results: RF frequency = 200 MHz,  peak 

voltage 2GV/turn. Acceleration within only 4 turns.

Figure 20 - Longitudinal phase space 
showing a 4 turns acceleration cycle from 

3 to 10 GeV with an initial beam 4D 
emittance of 0.1 eV.sec × 24 000 π.mm.mrad.

Figure 21 - Horizontal phase space showing 
the injected beam profile (red) and the same 

beam after a 4 turns acceleration cycle 
(green) with (4D emittance of 0.1 eV.sec × 

24 000 π.mm.mrad).
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Tracking results

Figure 22 - Longitudinal phase space showing a 7 
turns acceleration cycle (2D longitudinal 

tracking) from 3 to 10 GeV with an initial beam 2D 
emittance of 0.2 eV.sec.

Open a way for 1 
to 12 GeV 

acceleration at 
100 MHz in a 
SINGLE FFAG 

ring!

2D tracking results: RF frequency = 100 MHz,  peak 

voltage 2GV/turn. Acceleration within only 4 turns.
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Summary on stationary bucket 
acceleration

a single 1 to 
12 GeV scaling 

FFAG ring!
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Summary

Advanced scaling FFAG lattices can be 
used for both:

Harmonic number jump acceleration of muons

Stationary bucket acceleration of muons
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Thank you!
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Additional material...


