PRISM WITH ADVANCED SCALING FFAG

JB Lagrange, Y. Mori, Kyoto University

CONSTRAINTS

- Large transverse acceptance
- horizontal: 20000π mm.mrad
- vertical: 3 000т mm.mrad
- Momentum acceptance: $68 \mathrm{MeV} \pm 20 \%$

Original PRISM cell

k	4.6
Average radius	6.5 m
Phase advances:	
horizontal μ_{x}	97 deg.
vertical μ_{z}	55 deg.
Dispersion	1.16 m

Figure I: Original IO-cell PRISM ring Problem of Injection/Extraction

Reduced-dispersion area wanted \rightarrow Dispersion suppressors

DISPERSION SUPPRESSOR

distance to

DISPERSION SUPPRESSOR IN BENDING LINES

$$
\begin{aligned}
& R_{2}-\left(R_{1}-R_{2}\right)=R_{3} \\
& 2 R_{2}=R_{1}+R_{3} \\
& R=R_{0}\left(\frac{P}{P_{0}}\right)^{\frac{1}{k+1}}
\end{aligned}
$$

I st order

$$
\frac{2}{k_{2}+1}=\frac{1}{k_{1}+1}+\frac{1}{k_{3}+1}
$$

Figure 2: PRISM ring with 4 dispersion suppressors and 6 original PRISM magnets.

Figure 3: Change of working point in tune diagram.

Horizontal Poincarre map $\mathrm{Qx}=3.65, \mathrm{Qz}=3.54$

Betafunctions of original PRISM cell. (red: horizontal, green: vertical)

Betafunctions of a dispersion-suppressor cell (90 deg.) (red: horizontal, green: vertical)

Betafunctions of PRISM ring with dispersion suppressor. (red: horizontal, green: vertical)

SCALING STRAIGHT LINES

Straight section $=$ Bending section with infinite radius
$\lim _{r_{0} \rightarrow \infty}\left(\frac{r}{r_{0}}\right)^{k}=\lim _{r_{0} \rightarrow \infty}\left[\left(1+\frac{x}{r_{0}}\right)^{\frac{r_{0}}{x}}\right]^{\frac{x}{r_{0}} k}=\left[\lim _{r_{0} \rightarrow \infty}\left(1+\frac{x}{r_{0}}\right)^{\frac{r_{0}}{x}}\right]^{\frac{n}{\rho} x}=e^{\frac{n}{\rho} x}$
with $r=x+r_{0}$

$$
\begin{aligned}
& k=\frac{r_{0}}{\rho} n \\
& n=\frac{\rho}{B}\left(\frac{d B}{d x}\right)_{z=0}
\end{aligned}
$$

$$
B_{z}=B_{0} e^{\frac{n}{\rho}\left(X-X_{0}\right)}
$$

ANOTHER $\triangle A T T \backsim \square$

Bending cell k 6.5

Average radius 3.5 m Phase advances: horizontal $\mu_{x} \quad 90$ deg. vertical μ_{z} 87 deg.
Dispersion 0.47 m

Straight cell
n / ρ
$2.14 m^{-1}$
Length $3 m$
Phase advances:
horizontal μ_{x}
24 deg.
vertical μ_{z}
87 deg.

Betafunctions of bending cell.
(red: horizontal, green: vertical)

Betafunctions of straight cell.
(red: horizontal, green: vertical)

Betafunctions of bending and straight cells (half ring) (red: horizontal, green: vertical)

Horizontal Poincarre map

STILL A LOT OFWORKTO DO...

THANK YOU FOR YOUR ATTENTION

APPLICATION: PRISM

CHANGE RADIUS

distance to Po-reference trajectory

$$
\begin{array}{ll}
R_{1}-R_{01}=R_{2}-R_{02} \\
R=R_{0}\left(\frac{P}{P_{0}}\right)^{\frac{1}{k+1}} & \text { | st order }
\end{array} \quad \frac{R_{01}}{R_{02}}=\frac{k_{1}+1}{k_{2}+1}
$$

MISMATCH BEND-STRAIGHT

$$
k_{b}, r_{0} \quad n / \rho, X_{0}
$$

Straight cell: $B_{z}=B_{0 s} e^{\frac{n}{\rho_{s}}\left(X-X_{0}\right)}$
Bending cell: $B_{z}=B_{0 b}\left(\frac{r}{r_{0}}\right)^{k_{b}}$

Matching of Po: $B_{0 s} \rho_{s}=B_{0 b} \rho_{b}$
Matching of P: $B_{0 s} \rho_{s} e^{\frac{n}{\rho}\left(X-X_{0}\right)}=B_{0 b} \rho_{b}\left(\frac{r}{r_{0}}\right)^{k_{b}+1}$
I st order

$$
1+\left(k_{b}+1\right)\left(\frac{r-r_{0}}{r_{0}}\right)=1+\frac{n}{\rho_{s}}\left(X-X_{0}\right) \longrightarrow \frac{n}{\rho_{s}}=\frac{k_{b}+1}{r_{0}}
$$

DISPERSION SUPPRESSOR IN

$$
2 \frac{02}{n_{2}}=\frac{01}{n_{1}}+\frac{03}{n 3}
$$

