PRISM WITH ADVANCED SCALING FFAG

JB Lagrange, Y. Mori, Kyoto University

CONSTRAINTS

- Large transverse acceptance
 - horizontal: 20 000π mm.mrad
 - vertical: 3 000π mm.mrad

• Momentum acceptance: 68MeV ±20%

Original PRISM cell	
k	4.6
Average radius	$6.5\mathrm{m}$
Phase advances:	
horizontal μ_x	$97 \deg$.
vertical μ_z	$55\deg$.
Dispersion	$1.16\mathrm{m}$

Figure I: Original IO-cell PRISM ring Problem of Injection/Extraction

Reduced-dispersion area wanted

Dispersion suppressors

DISPERSION SUPPRESSOR

DISPERSION SUPPRESSOR IN BENDING LINES

$$R_{2} - (R_{1} - R_{2}) = R_{3}$$

$$2R_{2} = R_{1} + R_{3}$$

$$R = R_{0} \left(\frac{P}{P_{0}}\right)^{\frac{1}{k+1}}$$

$$\frac{2}{k_2 + 1} = \frac{1}{k_1 + 1} + \frac{1}{k_3 + 1}$$

Figure 2: PRISM ring with 4 dispersion suppressors and 6 original PRISM magnets.

Figure 3: Change of working point in tune diagram.

Horizontal Poincarre map Qx = 3.65, Qz = 3.54

Betafunctions of original PRISM cell. (red: horizontal, green: vertical)

Betafunctions of a dispersion-suppressor cell (90 deg.) (red: horizontal, green: vertical)

Betafunctions of PRISM ring with dispersion suppressor. (red: horizontal, green: vertical)

SCALING STRAIGHT LINES

Straight section = Bending section with infinite radius

$$\lim_{r_0 \to \infty} \left(\frac{r}{r_0}\right)^k = \lim_{r_0 \to \infty} \left[\left(1 + \frac{x}{r_0}\right)^{\frac{r_0}{x}} \right]^{\frac{x}{r_0}k} = \left[\lim_{r_0 \to \infty} \left(1 + \frac{x}{r_0}\right)^{\frac{r_0}{x}} \right]^{\frac{n}{\rho}x} = e^{\frac{n}{\rho}x}$$

with
$$r=x+r_0$$

$$k=\frac{r_0}{\rho}n$$

$$n=\frac{\rho}{B}\left(\frac{dB}{dx}\right)_{z=0}$$

$$B_z = B_0 e^{\frac{n}{\rho}(X - X_0)}$$

ANOTHER LATTICE

Bending cell

k 6.5

Average radius 3.5 m

Phase advances:

horizontal μ_x 90 deg.

vertical μ_z 87 deg.

Dispersion 0.47 m

Straight cell

 n/ρ 2.14 m^{-1}

Length 3m

Phase advances:

horizontal μ_x 24 deg.

vertical μ_z 87 deg.

Betafunctions of bending cell. (red: horizontal, green: vertical)

Betafunctions of straight cell. (red: horizontal, green: vertical)

Betafunctions of bending and straight cells (half ring) (red: horizontal, green: vertical)

Horizontal Poincarre map

APPLICATION: PRISM

CHANGE RADIUS

$$R_1 - R_{01} = R_2 - R_{02}$$
 $R = R_0 \left(\frac{P}{P_0}\right)^{\frac{1}{k+1}}$
 $\frac{1}{R_{02}} = \frac{k_1 + 1}{k_2 + 1}$

MISMATCH BEND-STRAIGHT

Straight cell:
$$B_z = B_{0s} e^{\frac{n}{\rho_s}(X - X_0)}$$

Bending cell: $B_z = B_{0b} \left(\frac{r}{r_0}\right)^{k_b}$

Matching of Po: $B_{0s}\rho_s=B_{0b}\rho_b$

Matching of P: $B_{0s}\rho_s e^{\frac{n}{\rho}(X-X_0)}=B_{0b}\rho_b\left(\frac{r}{r_0}\right)^{k_b+1}$

1st order

$$1 + (k_b + 1)\left(\frac{r - r_0}{r_0}\right) = 1 + \frac{n}{\rho_s}(X - X_0) \qquad \frac{n}{\rho_s} = \frac{k_b + 1}{r_0}$$

DISPERSION SUPPRESSOR IN STRAIGHT LINES

$$X_{2} - (X_{1} - X_{2}) = X_{3}$$

$$2X_{2} = X_{1} + X_{3}$$

$$X = \frac{\rho}{n} \ln(\frac{P}{P_{0}})$$

