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Introduction (1)
synchrotron and FFAG optics

• First Alternating Gradient synchrotrons have
–many identical cells: 20 (CPS), 24 (AGS).
–all combined function magnet: no quadrupole.

• Footprint of those synchrotrons looks similar to FFAG.
–high degree of symmetry.
–magnet gives net orbit angle.
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Introduction (2)
a lesson from evolution of synchrotron lattice

• AG synchrotron lattice evolves since then.
–quadrupole (separated function magnets): straight 

section.
–many family of focusing elements.
– insertion and matching between sections.

• Superperiod is introduced.
–different cell structure makes arc and insertion.
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Introduction (3)
a possible reason

• High degree of symmetry is essential in linear nonscaling 
FFAG.
–avoid structure resonances.

• However, if tune does not move much, operating tune can be 
optimized to avoid resonance crossing.
– scaling FFAG.
–nonlinear nonscaling FFAG with fixed tune.

• High degree of symmetry is not necessary in FFAG.

• Why FFAG still looks old shape? 
– in fact, FFAG lattices are evolving as well.
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Many family of focusing elements (1)
early work

• Pumplet by Grahame Rees (nonlinear nonscaling)
–zero chromaticity, constant tune, with non r^k field
– isochronous ring
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Insertion and matching (1)
some examples

• 3-fold lattice by Phil Meads (scaling)
– insertion with zero dispersion

• Muon FFAG by Al Garren (linear nonscaling)
– insertion for injection, extraction and rf systems

• Pumplet by Grahame Rees (nonlinear nonscaling)
–“bending” insertion with combined function magnets.

• Racetrack FFAG by Dejan Trbojevic (linear nonscaling)
– insertion with quadrupole

• Muon FFAG by me (nonlinear nonscaling)
–“bending” insertion with triplet

• Racetrack FFAG by Yoshiharu Mori (scaling)
– insertion with large k
–help harmonic number jump scheme
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Insertion and matching (2)
beta function in triplet

• One 7 m drift and two 5 m 
drift every 11 cells.

• 5 fold symmetry lattice.
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• Modulation of beta function in different energy.



9

Insertion and matching (3)
difficulties

• Matching of lattice functions as well as dispersion for 
whole energy range cannot be perfect.
–Approximation may be good enough, but introduce a 

slight mismatch.

• I name it “modular method”. Insertion is introduce by 
matching between several modules.



10

Another way in scaling FFAG (1)
idea

• As long as magnetic fields have the shape of

• FFAG with long drift space can be designed with more 
complex function of         .
–FD, FDF are the simplest case.
– In principle, all F and D can be different family.

F (θ)

F (θ) can be arbitrary.       should be constant.

Bz = Bz,0(
r

r0
)kF (θ)

k
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Another way in scaling FFAG (2)
global method

• I name it “Global method” (works only for a scaling FFAG)
– Introduce a variety on azimuthal field distribution.

• No need to match section by section. Scaling property is 
assured.
– tune is constant independent of momentum.
–closed orbit is photographic enlargement.



12

Another way in scaling FFAG (3)
inserting long straight drift

• O(FDF)(FDF)(FDF)O as one quadrant of a ring.

red: horizontal beta

blue: vertical beta

- Stable optics exist.
- However, beta functions        
are modulated.



13

Another way in scaling FFAG (4)
fitting example

• Fitting tool has to be developed.
–Given initial configuration of lattice magnets, calculate closed 

orbit and optics functions.
– If beta functions are larger than what we expected and/or 

phase advance is not what we want, change strength of 
magnets.

–Repeat the above process until it converges.

• Command in s-code
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Another way in scaling FFAG (5)
fitting example

• Example of minimizing (flattening) beta functions.
–O(F3D2F2)(F1D1F1)(F2D2F3)O as one quadrant of a ring.

red: horizontal beta

blue: vertical beta

red: horizontal beta

blue: vertical beta

before fitting after fitting



red: horizontal beta

blue: vertical beta
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Another way in scaling FFAG (6)
4 fold symmetry

• 12*O(FDF)O

• 4*O(F3D2F2)(F1D1F1)(F2D2F3)O

red: horizontal beta

blue: vertical beta

red: magnet

green: orbit

red: magnet

green: orbit
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Another way in scaling FFAG (7)
4 fold symmetry with shorter drift space

• 12*O(FDF)O

• 4*O(F3D2F2)o(F1D1F1)o(F2D2F3)O

red: horizontal beta

blue: vertical beta

red: magnet

green: orbit

red: magnet

green: orbit

red: horizontal beta

blue: vertical beta
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Another way in scaling FFAG (8)
reduction of maximum fields

• Maximum field strength

superperiod Bf_max [T] Bd_max [T] drift_max [m]

12 (original) 3.2 -2.2 1.96

6 2.7 -1.6 1.96

4 2.5 -1.5 1.96

4 3.4 -1.7 2.40

• Same drift length with lower magnetic field strength or 
longer drift length with same magnetic field strength.
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“Separated function” magnets (1)
idea

• In FFAG, focusing comes from gradient of net bending. 
Bending and focusing functions cannot be separated.

• However, FFAG straight beam line can be designed.
–combination of F and D which gives zero net bending.
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• I use a first few multipoles of

• With very larger y0 and k, 
they are same as the ones of

Bz = Bz,0 exp(
ky

y0
)F (θ)

Bz = Bz,0(
y

y0
)kF (θ)
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“Separated function” magnets (2)
phase advance

• Phase advance per cell is a function of
–k value
–F/D ratio
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“Separated function” magnets (3)
dispersion suppressor

• Dispersion suppressor can be 
made with combination of 
different k.
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• Applications of the FFAG beam transport line
–beam line between FFAG and gantry.
–dump line of ADSR.

(pi section)
dispersion sup.normal cell
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Using second stability region (1)
reduce orbit excursion

• No point to use second stability region in a synchrotron.
– focusing strength and orbit shift (dispersion function) can be 

independently determined in synchrotron and linear 
nonscaling FFAG.

1.5

1.0

0.5

0.0
-B

0,
D

/B
0,

F
50403020100

field index k

 0
.7

5 

 0
.6

 

 0.25 

 0
.2

5 

0.
05

 0.25 
0.05

0.45
0.05

0.45 0.
95

– large k is preferable to reduce 
orbit shift.

–phase advance goes beyond 
180 degrees.

• In scaling and nonlinear nonscaling 
FFAG, field index k determines 
both focusing and orbit excursion.
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Using second stability region (2)
solutions to three major problems

• Beam blowup at resonance crossing can be avoided by almost 
constant tune.

• Magnets can be much smaller due to smaller orbit shift.
• Small number of cell gives enough room for injection, 

extraction and rf systems.

• In PAMELA design,
– tune excursion is well within 0.5.
–orbit shift is around 170 mm.
– long straight is more than 1.5 m.
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Using second stability region (3)
more examples

• Under the same design principle, higher momentum nonlinear 
nonscaling FFAG can be also designed.
–1.5 GeV proton FFAG for neutron production or ADSR.
–6 or 20 GeV proton FFAG as a proton driver of NF.

31 MeV injector cyclotron 

250 MeV booster FFAG 

1.5 GeV main FFAG 

• FFAG for ADSR
– 24 cells
– radius is 22 m
– orbit shift is 170 mm
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Using second stability region (4)
the ultimate FFAG

• Large k optics with long straight section.
– should be the ultimate proton driver type FFAG.
–perturbation on optics is larger with larger k.

12 cell symmetric lattice additional 0.22 m every 3 cells
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From scaling to nonscaing (1)
easy to build, make it cheaper

• In practice, exact scaling field profile is not necessary.
– truncation of multiples.
– rectangular magnets.
– straight alignment.

• Nonscaling FFAG based with fixed tune (or phase advance.)



26

Summary

• FFAG optics is evolving in the same way as a synchrotron did.
–quadrupole (separated function magnets): straight section.
–many family of focusing elements: not one family of F and D.
– insertion and matching between sections.

• Space for inject/extract, rf system and flexibility in general.

• In addition, use of the second stability region reduces orbit 
shift considerably.

• The third generation of FFAG (if nonscaling is the second 
generation) will includes all these ingredients.

Who is ready to make a proof of principle model?


