LBNE with Project X

Milind Diwan 11/9/2009 FNAL

Summary of calculations

- The proposal and calculations for a long baseline program with high intensity super beams and very massive detector were done by MD in 2001-2002.
- Detector and beam performance have been subject of intense scrutiny over last few years. (Mary Bishai, Mark Dierckxsens, Chiaki Yanagisawa, Ed Kearns, etc.)
- New calculations contain detailed beam simulations, and detector performance based on SuperK simulations; for Liquid argon assumption is a near perfect detector.
- There are many avenues for optimization beyond the initial calculations from nearly a decade ago. The initial calculations were most likely conservative.

BROOKHAVEN	Beam Requiremen	ts for LBNE Physics at 1300km			
LBNE Physics and Beam Designs	We are designing a 20 \	YEAR program:			
Mary Bishai.	Physics topic	Beam characterisitcs			
Brookhaven National Lab	CPV	$E_{\nu} = 0.5 - 4 \text{ GeV}$, significant flux at 1 GeV low ν_{e} contamination			
LBNE Physics	Mass hierarchy	$E_{\nu} = 1 - 10$ GeV, more flux at higher energies			
LBNE Physics with	ν_{τ} appearance	$E_{\nu} = 3 - 10 \text{ GeV}$			
$\nu_{\mu} \rightarrow \nu_{e}$ at 1300km Physics with $\nu_{\mu} \rightarrow \nu_{\tau}$	$\Delta m_{32}^2 / \Delta \bar{m}_{32}^2$	peak E around 4-5 GeV $E_{\nu} = 1 - 10 \text{ GeV}$ completely cover two maxima			
Recap of beam options considered	θ ₂₃ octant	$E_{\nu} = 0.2 - 1.5 \text{GeV NO } \nu > 2 \text{ GeV}$ small low energy ν_{e} contamination			
Sensitivities for various beam options	New physics searches Near detector physics	High energy ν s (100's of GeV)? ?			
LBNE physics at low energies	Not possible with a single wide-band beam! We must design a tunable beam: primary proton energy 15-120 GeV, ability to put in				
Summary	different focusing systems (massive 100m superconducting				
	solenoids?), change conf	iguration of target/focusing system.			

BROOKHAVEN FNAL beam power and energy

LBNE Physics and Beam Designs

Mary Bishai, Brookhaven National Lab

LBNE Physics LBNE Physics with $\nu_{\mu} \rightarrow \nu_{e}$ at 1300km Physics with $\nu_{\mu} \rightarrow \nu_{\tau}$

Recap of beam options considered

Sensitivities for various beam options

LBNE physics at low energies

Summary

BROOKHAVEN Optimization options considered

LBNE Physics and Beam Designs

Mary Bishai, Brookhaven National Lab

LBNE Physics

Physics with $\nu_{\mu} \rightarrow \nu_{e}$ at 1300km Physics with $\nu_{\mu} \rightarrow \nu_{\tau}$

Recap of beam options considered

Sensitivities for various beam options

LBNE physics at low energies

Summary

Starting from a 2-horn NuMI-like focusing system, I considered the following optimization options:

- Strategy 1: Increase low energy flux at the oscillation maximum through improved:
 - 1a) target design: Size, material, position w.r.t horn 1
 - 1b) focusing: AGS horn design, NuMI horn design, horn material, horn separation, horn currents
 - 1c) beam energy: 60, 90, 120 GeV
 - 1d) decay pipe geometry: Diameter, length
- Strategy 2: Improve S:B at low energies by reducing high energy tail using:
 - 2a) beam energy
 - 2b) beam plugs
 - 2c) off-axis beams

KHAWEN List of Simulated 2-Horn Beams

LBNE Physics and Beam Designs	
Mary Bishai, Brookhaven National Lab	1 2

I considered over 20 variations on a 2 horn beam design using NuMI and AGS horn designs in order of the increasing total ν_e CC appearance rate at DUSEL (per MW). Option 10 is the default:

Brookhaven		E _{p+}	Target	horns	decay pipe	other
National Lab	1	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 200kA	R=2.0m L=380m	
	2	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=380m	0.5° o.a.
LBNE Physics	3	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 200kA	R=2.0m L=380m	tgt z+20cm
LBNE	4	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=1.5m L=380m	
Physics with $\nu_{\mu} \rightarrow \nu_{\mu}$ at	5	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=280m	
1300km	6	120	C 2.1g/cm ³ R=1cm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=380m	
Physics with	7	120	C 1.8g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=380m	
о <u>н</u>	8	120	Be 1.9g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=380m	
Recap of	9	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=380m	Beam plug
considered	10	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=380m	
considered	11	90	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=380m	
Sensitivities	12	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI Be dZ=6m, 250kA	R=2.0m L=380m	
for various	13	60	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=380m	
beam options	14	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=480m	
LBNE physics	15	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.5m L=380m	
at low energies	16	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=10m,250kA	R=2.0m L=380m	
	17	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI Li dZ=6m, 250kA	R=2.0m L=380m	
Summary	18	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 250kA	R=2.0m L=380m	tgt z-20cm
	19	120	C 2.1g/cm ³ R=6mm L=80cm	A1N2 AI dZ=6m, 250kA	R=2.0m L=380m	
	20	120	C 2.1g/cm ³ R=6mm L=80cm	NuMI AI dZ=6m, 350kA	R=2.0m L=380m	

・ロト・日本・日本・日本 日 のへで

BROOKHAVEN 2-Horn Beam Options Rates and Backgrounds

LBNE Physics and Beam Designs

Mary Bishai, Brookhaven National Lab

LBNE Physics LBNE Physics with $\nu_{\mu} \rightarrow \nu_{e}$ at 1300km Physics with $\nu_{\mu} \rightarrow \nu_{\tau}$

Recap of beam options considered

Sensitivities for various beam options

LBNE physics at low energies

Summary

Using a simplified WCe detector response we can approximate the signal rates and NC backgrounds in various bins. Thus we can compare the different beam options:

Monday, November 9, 2009

Water Cerenkov spectra for NuMI-like beams with a 280m DP length

LBNE Physics and Beam Designs

BROOKHAVEN

Mary Bishai, Brookhaven National Lab

LBNE Physics LBNE Physics with $\nu_{\mu} \rightarrow \nu_{e}$ at 1300km Physics with $\nu_{\mu} \rightarrow \nu_{\tau}$

Recap of beam options considered

Sensitivities for various beam options

LBNE physics at low energies

Summary

Monday, November 9, 2009

Sensitivity summary

Background systematic uncertainty = 5%

LBNE Physics and Beam Designs

BROOKHAVEN

Mary Bishai, Brookhaven National Lab

LBNE Physics LBNE Physics with $\nu_{\mu} \rightarrow \nu_{e}$ at 1300km Physics with $\nu_{\mu} \rightarrow \nu_{\tau}$

Recap of beam options considered

Sensitivities for various beam options

LBNE physics at low energies

Summary

winning value of sin 2013 at 50 sensitivity.						
Option	Exposure $\theta_{13} \neq 0$ hierarch		hierarchy	CPV		
	(MW.yr)	all δ_{cp}	all δ_{cp}	$50\%\delta_{cp}$		
	Project X					
60e250i002dr280dz*	7+7?	0.004?	0.011?	0.010?		
120e250i002dr280dz	7+7	0.004	0.014	0.012		
	700kW beam (at 120 GeV)					
120e350i002dr280dz**	3+3	0.006	0.025	0.017		
60e250i002dr280dz*	3+3?	0.006?	0.017?	0.019?		
120e250i002dr280dz_plg5	3+3	0.007	0.021	0.019		
120e250i002dr280dz	3+3	0.007	0.021	0.021		
60e250i002dr280dz	2.25 + 2.25	0.007	0.020	0.022		

Minimum value of sin² 20. at 2 a consitivity

*Sensitivity was calculated for 0.75 beam power and scaled by $1/\sqrt{0.75}$

**There are islands developing in the mass hier/CPV sensitivity. I suspect its due to the worse S/\sqrt{B} at the 2nd peak where you can no longer resolve δ_{cp} when there is a deficit in $P(\nu_{\mu} \rightarrow \nu_{e})$.

Numbers produced last year with other beam conditions.

Beam	Det size	Exposure	syst. uncert	$\sin^2 2\theta_{13}$	$\operatorname{sign}(\Delta m_{31}^2)$	CPV
	(FIDUCIAL)	$\nu + \bar{\nu}$	on bkgd			
NuMI/HStake	100kT	700kW 2.6+2.6yrs	5%	0.018	0.044	> 0.1
$120 {\rm GeV}$	$100 \mathrm{kT}$	1MW 3+3yrs	5%	0.014	0.031	> 0.1
9mrad off-axis	300kT	1MW 3+3yrs	5%	0.008	0.017	0.025
	300kT	1MW 3+3yrs	10%	0.009	0.018	0.036
	300kT	2MW 3+3yrs	5%	0.005	0.012	0.012
	300kT	2MW 3+3yrs	10%	0.006	0.013	0.015
NuMI/HStake	$100 \mathrm{kT}$	1MW 3+3yrs	5%	0.012	0.037	>0.1
60GeV on-axis	300kT	1MW 3+3yrs	10%	0.008	0.021	0.037
	300kT	2MW 3+3yrs	5%	0.005	0.013	0.015

FIG. 8: Measurement of δ_{cp} and $\sin^2 2\theta_{13}$ with a 300kT fiducial detector with a 2MW beam 3+3 yrs. The left plot is for the 120 GeV 9mrad off-axis wide-band beam and the right plot is for a 60 GeV on-axis wide-band beam. Normal hierarchy and 5% bkgd systematic are assumed.

8 GeV running ?

Current beam designs do not have enough flux at low energy to see ν_{e} appearance due to the solar term and measure $\sin^{2}\theta_{23}$ - we can use this to determine whether θ_{23} is maximal:

 Need MW class 8 GeV beam. Could go after the solar term with a few hundred events.

Conclusions

- A lot of simulation work has been done since the initial proposal. The beam related work is now quite advanced. The detector optimization has started.
- Conclusion is that the sensitivity for CPV could be pushed down to $\sin^2 2\theta_{13} \sim 0.01$ where it gets limited by background.
- This requires a very large detector (300 kT for water and 50-100 kT for liquid argon) with a 1-2 MW class beam. The precision on the CP parameter is independent of sin²2θ₁₃