

The Project X Accelerator Complex

Valeri Lebedev & Sergei Nagaitsev Fermilab

The 4th Workshop on Physics for Project-X Fermilab
November 9 - 10, 2009

Contents

- Issues with Initial Configuration-1 (IC-1)
- Objectives for Initial Configuration-2 (IC-2)
- Description of IC-2
- Conclusions

Project X Initial Configuration - 1 (IC-1)

- IC-1 is based on ILC-technology/pulsed, 1.3GHz SC linac
 - ◆ Initial proposal, 2007
 - 2 MW at (60 -120 GeV) in MI
 - ILC technology test
 - Replacement for ~40 years old Booster & Linac
 - ♦ Final IC-1 (as spring of 2009)
 - 2 MW at (60 -120 GeV) in MI
 - for LBNE
 - ~300 kW for 8 GeV program
 - Mu2e upgrade (slow extraction)
 - Reduced coupling to ILC
 - Improved but still comparatively narrow physics program

IC-1 problems

- Slow extraction
 - → ~70 kW demonstrated at Tevatron and AGS (1TeV&25 GeV)
- High efficiency of slow extraction is required
 - Small betatron tune spread
 - ◆ Large difference between core emittance and acceptance
- Slow extraction for mu2e
 - ♦ Only 8 GeV energy
 - Small duty factor: 50 of ~500 ns (η ~0.1)
 - \Rightarrow Large tune spread due to beam space charge ($\gamma^2/\eta\sim100$)
- Mitigation of slow extraction problems
 - ♦ 3 ring scheme: Recycler Accumulator Debuncher
- Only one experiment can be supported
 Different time structure is required for different experiments
 - Rigid time structure difficult & expensive to change

Objectives for Initial Configuration – 2 (IC-2)

- 2 MW at 60-120 GeV in MI
 - ♦ Same as AC-1 LBNE, ...
- 8 GeV program with single turn extraction (≥100 kW) g-2, ...
- Diverse program with muons & kaons μ -to-e, $K \rightarrow \pi \nu \nu$, ...
 - Different experiments require different time structures
 - Power on the target has to be rather limited by event rate than by the available beam power
 - ◆ CEBAF is an example of such machine with e-beam

Project X IC-2

- IC-2 conception
 - ◆ 2.0 GeV CW linac (2.X GeV looks as right choice, X=?)
 - potentially "unlimited power"
 - stable beam parameters
 - ◆ RF separation + bunch-by-bunch chopping
 - Multiple experiments operating simultaneously
 - Independent bunch structure control
 - "Pulsed" 2-to-8 GeV acceleration (10 Hz, 4.2 ms) to support MI program
 - Both RCS or pulsed SC linac are a good choice

IC-2 developments

- \blacksquare Development of IC-2 concept started in March, 2009
- It was strongly supported by Physics Advisory Committee in June 2009
 - Highest priority since then
- Now we are ready to release
 - ♦ Report on physics part "Report from the ICD-2 Research Program Task Force"
 - Report on accelerator part
 "Project X Initial Configuration Document 2"

RING

MAIN INJECTOR

RF separation

- One RF separator can split linac beam into 2 or 3 beams
 - 3-rd sub-harmonic splitter splits beam in 3 equal beams (CEBAF like) $f_b = 162.5 \text{ MHz}$ $f_{exp} = f_b/3 \approx 54 \text{ MHz}$

♦ 4-th sub-harmonic splitter - one of 3 beams has twice larger intensity

$$f_b = 162.5 \text{ MHz}$$

 $f_{exp} = f_b/2 \approx 81 \text{ MHz}$
 $= f_b/4 \approx 40.5 \text{ MHz}$

RF separation (continue)

- ICD-2 RF splitter:
 - ♦ 4 SC cavities,
 - \bullet f_{RF} = $(2+1/4)f_b = 365.625$ MHz,
 - ♦ L=4.5m
 - \bullet θ = 5 mrad
 - ◆ E_⊥L=5 MeV
- Additional RF
 separators allow
 simultaneous
 operation for more
 than 3 users
 - Bunch frequency and power for each experiment will be smaller

Beam chopping

- Bunch-by-bunch chopper supports a bunch structure required for each experiment
 - Setting desired
 structure on-line
 - Digital control of chopping pulses
 - Wide band amplifier, ~1 GHz

- Set time structure
- Adjust ion source current to get 1mA in linac

Beam chopping (continue)

- Achieving high extinction (~10⁻⁹ for Mu2e) is not simple
 - ◆ Particle lost from bunch in linac cannot get to another bunch
 - Extinction is determined by chopper
 - Chopper problems
 - Bunch space charge can create tails
 - CW operation + wide band (50 Ω) \rightarrow Limited power
 - \rightarrow small kick \rightarrow Large length of the system

→ amplifies space charge problems

 3σ beam envelopes in chopper region: $\varepsilon_{rms_n} = 0.3$ mm mrad, Four 1 m choppers $U = \pm 300 \text{ V}$ Gap: $\pm 11 \text{ & } \pm 15 \text{ mm}$ Quad triplets & Bunching cavities

CW linac

- Same structure as for IC-1
 - ◆ ILC like SC cryomodules
 - ◆ Accelerating gradient is reduced: 25 →17 MeV/m
 - Machine cost versus cost of operations
 Cryogenic power reduction
- Different SC cavities to support wide range of velocities (same as IC-1)
 - ◆ Support acceleration from 2.5 MeV to 2 GeV
- NC RFQ: 2.5 MeV, 10 mA, 25 kW (~150 kW RF)

CW linac (continue)

CW linac (continue)

SSR1 cavity

- E

Triple spoke

ILC

Synchrotron

	1
Energy, min/max, GeV	2/8
Repetition rate, Hz	10
Circumference, m (MI/6)	553.2
Tunes	18.44
Transition energy, GeV	13.36
Beam current at injection, A	2.2
Harmonic number	98
Maximum RF voltage, MV	1.9
95% n. emittance, mm mrad	25
Space charge tune shift, inj.	0.07†
Norm. acceptance, mm mrad	40
Injection time for 1 mA, ms	4.3
Linac energy cor. at inject.	0.8%
RF bucket size, eV s	0.4
Number of 1-st harm. RF cav.	16

tFor KV-like distribution at injection, longitudinal bunching factor 2.2.

- Acceleration from 2 to 8 GeV
 - ♦ Less expensive than SC linac
- I_{Beam}: 5 times of Booster
- Avoid Booster problems
 - No transition crossing
 - No laminations seen by beam; smaller Z_{11} , Z_{\perp}
 - Zero Disp. in cavities:SB resonance

Features

- ♦ Circumference, $C = C_{MI}/6$
- High periodicity FODO
- Acceptance Matches MI
- ♦ 2 harmonics RF system
- High injection energy helps with SC and instabilities

Synchrotron (continue)

- Racetrack
- Dispersion is zeroed by missed dipole
- Two types of quadrupoles but with the same strength
- All quads and dipoles are on the same bus
 - ♦ Resonance circuit to reduce PS voltage
- \blacksquare β -functions are blown-up in injection region

Thu Sep 17 14:51:49 2009 OptiM - MAIN: - C:\VAL\Optics\MuonCollider\Synchrotron\RCS_withFoil_Inj.opt

Twiss parameters for the first half of the ring

Synchrotron (continue)

- 100 dipoles and 130 quads
- High injection energy (2 GeV)
 - \rightarrow small aperture
 - →small magnets
- Round vacuum chamber
 - Stainless steel 0.7 mm
 - External diameter 44mm
 - ♦ Sagitta 1.67 cm
 - ♦ Eddy currents
 - $\Delta B/B_{max} = i \cdot 1.4 \cdot 10^{-3}$
 - Power loss 11 W/m
 - Chromaticity correction: $|\Delta \xi|$ ~1

Resonance circuit for 1 lattice cell

Injection to Synchrotron

- Strip injection through
 600 μg/cm² graphite foil
- Small linac current
 - \Rightarrow 2200 turn inject. (11 for Booster)
 - ♦ X-Y painting by CO displacement
 - → ~50 secondary passages per particle
 - Foil $T_{max} = 1500 \text{ K}$

RCS versus Pulsed Linac

- RCS
 - ♦ Less expensive
 - Injection at smaller energy
 - ⇒ Easier to manage injection loss
 - Limited upgrade potential
- Linac
 - Easier to upgrade
 - to 4 MW power proton driver
 - + to ~20 GeV recirculator for neutrino factory
 - ♦ Many injections per cycle if foil strip-injection is used (10 Hz)
 - Requires Recycler
 - \Rightarrow 8 GeV final energy
 - ♦ An upgrade will require beam current increase: $1 \rightarrow ≥20 \text{ mA}$
 - ⇒2 GeV program discontinue or building another 2 GeV frontend!!!

Ideal Project X Scenario (an accelerator physicist point of view)

- Start "g-2" or antiproton physics experiments in Accumulator after Tevatron shutdown, 2012-2013.
 - ◆ In contrast to mu2e the "g-2" experiment does not require complete decommissioning of Antiproton source
- Build 2 GeV linac & first experiment (mu2e?) by 2016
- Finish RCS by 2018
 - 2 MW in MI should follow
 - Booster and linac can be decommissioned
- Build facility for kaon and muon physics at 2.X GeV by ~2020

Conclusions

- ICD-2 creates diverse program at Intensity Frontier
 - Choice between RCS and Pulsed linac need to be done. It will be driven by
 - Cost & Upgradability
- There are no obvious cost reduction schemes without sacrificing machine parameters
 - ◆ Staging will work
- We need a prioritized list of experiments for:
 - ◆ Continuous beam at 2.X GeV (2 MW)
 - What is X in 2.X GeV?
 - ◆ Fast extracted 8 GeV beam (100 300 kW)
 - ♦ Antiproton physics $(2.10^{11} \text{ pbars per hour, E} \le 8 \text{ GeV})$

Backup viewgraphs

Bunch train requirements for the kaon and muon rare decay programs

	Train Frequency	Pulse Width	Inter-Pulse
		(nanoseconds)	Extinction
Kaon experiments	20-30 MHz	0.1-0.2	10 ⁻³
Muon conversion experiment	0.5-1.0 MHz	50	10 ⁻⁹