

NOvA Project: Description and Status

John Cooper Project Manager

NOvA @ Engineer Week, Feb 17, 2010

Science overview

- NOvA is an acronym
 - NuMI Off-axis $\nu_{\rm e}$ Appearance
 - (and NuMI is another acronym: Neutrinos at the Main Injector)
- NOvA is designed to look for $v_{\mu} \rightarrow v_{e}$ oscillations
 - One of several experiments to measure $sin^2(2\theta_{13})$
 - Just a theory parameter related to the probability of electron neutrino appearance
 - At the current experimental limit, in a 6 data year run, NOvA would see
 150 electron neutrino events on a background of 22 fake events
 - At the limit of NOvA's detection ability, we would see
 15 events on the same background of 22
 - First look by any experiment at the mass hierarchy
 - Which neutrino species is heavier
 - First look by any experiment for CP violation in the neutrino sector
 - Related to matter / anti-matter asymmetry in the universe?

NOvA @ Engineer Week, Feb 17, 2010

Project overview, the quick version

Project components:

- Accelerator and NuMI Upgrades
 - 700 kW beam vs. current 320 kW for MINOS
 - This work requires an 11 month shutdown in 2012
 - Recycler converted from anti-proton storage ring to a proton storage ring/ pre-injector into the Main Injector once the Tevatron Collider program ends
 - New kickers to get beam in and out of Recycler & Main Injector
 - Main Injector cycle time reduced from 2.2 sec to 1.5 sec with Recycler
 - Reduce further to 1.33 seconds with 2 more RF stations
 - Upgrades to NuMI beamline to handle 700 kW
- Detectors
 - 14,000 ton Far Detector & a 220 ton Near Detector
 - Liquid scintillator, waveshifting fiber, Avalanche Photo Diode @ -15°C
 - Far Detector has 357,120 cells:
 - each 15.5 m long, 4 cm wide, 6 cm deep
 - Detectors are "off-axis" to the NuMI beamline by 14.6 mrad which gives a ~ mono-energetic beam at 2 GeV
- Buildings
 - Far Detector is at Ash River, Minnesota (near International Falls)
 - At 810 km from Fermilab
 - So L/E is ~ at the minimum of surviving muon neutrinos
 - Cavern underground at Fermilab for Near Detector

• Total Project Cost is 278 M\$ -- 90 M\$ obligated to date

NOvA @ Engineer Week, Feb 17, 2010

J. Cooper

To 1 APD pixel

typical

charged

particle

path

Accelerator and NuMI Upgrade progress

- Kicker design and procurement
 - First Kicker installed
 - in Main Injector for gap-clearing with MINOS
 - This work is off-project on Accelerator Improvement Project (AIP) funds
 - 7 magnets (= 1 kicker) installed in the 2009 summer shutdown
 - This kicker moves up to the Recycler (just above in the picture) for NOvA
 - This kicker has the most severe constraints on rise time and fall time and flattop stability, so much risk is now removed from NOvA

 Additional NOvA kickers are under construction

Accelerator and NuMI Upgrade progress

- Magnet design, testing, and manufacturing for Recycler and transfer lines
 - PDS (Permanent Dipole Short)
 - New magnet design using SmCo5
 - Prototype made externally, measured and meets expectations
 - Internal Design Review completed
 - PDD (Permanent Double Dipole)
 - Injection line requires 5 new magnets
 - Existing design, tooling, procedures and measurement not used for 10 years
 - Being resurrected in Tech Division
 - ADC_W (Wide gap ADC)
 - Switch magnet from MI-8 line to Recycler injection transfer line:
 - preserving capability of Booster Neutrino Beam
 - Transfer line from Recycler to Main Injector
 - Modifying existing 8 GeV magnet to larger aperture:
 - Under test at 15 Hz,
 - Clarify beam pipe requirements
 - » Active cooling (eddy currents)

NOvA @ Engineer Week, Feb 17, 2010

Accelerator and NuMI Upgrade progress

- Beam Position Monitor cable delivery complete in December 2009
 - 330,000 feet ¼ in heliax
 - Stored in PC4
- OFHC (Oxygen free high conductivity copper) shells for Recycler RF
 - Forged from copper ingots,
 ~6 months advance on schedule
 - 1.5 m long, 70 cm diameter, 2.5 cm thick

Accelerator and NuMI Upgrades

NuMI Beamline

- New Medium Energy target, upstream from current low energy target
- Horn stripline extension so Horn #2 can move to medium energy position
- Cooling modifications and power supply upgrades to handle the 700 kW and faster cycle time

Ash River, Minnesota Site

- Farthest site from Fermilab within the US along the existing NuMI Beam that is accessible by all weather road
 - Does require a 3.5 mile long new road from the existing county road to the site
 - 810.5 km from Fermilab, just 1.5 miles south of Voyageurs National Park
 - West of the NuMI beam by 11.8 km ("off-axis")
 - 2 GeV neutrino beam
 - Site and access easements were purchased by the University of Minnesota

Access Road Progress on Far Detector site

July 2009

- The gravel phase of the 5.6 kilometer access road to the site is complete
 - 54,000 tons of granite Class 5 Aggregate base crushed on site and applied to the road.
 - Utility duct banks installed.
 - Paving next summer.

Building is set in granite rock

- Cosmic Ray shielding
- Ease in secondary containment of liquid

NOvA @ Engineer Week, Feb 17, 2010

Far Detector Building progress at Ash River, Minn

Views from the North looking towards Fermilab The excavation is down 20 ft over the entire building

- Final lift will drop the pit another 24 ft.
 - That work began in February
- Part of the Service Building at the north end of the pit is done.

NOvA @ Engineer Week, Feb 17, 2010

Far Detector Building progress at Ash River, Minn

- View from the West
 - Building is full ~ 400 ft length, ~75 ft wide, 20 ft deep
 - Exposed walls have been rock-bolted

Rock bolts installed in all walls of first lift

Feb 4 blast to lowest level, down 44 ft

Using "smooth wall" blasting technique vs. earlier "pre-split" technique

NOvA @ Engineer Week, Feb 17, 2010

NOvA assembles TWO Detectors

Both have successive layers of vertical and horizontal **PVC** cells bonded together with adhesive

- 14,000 ton Far Detector
 - 12 by 12 extrusion modules, 930 layers
- 222 ton Near Detector
 - 2 by 3 extrusion modules, 206 layers
 - 300 feet underground at Fermilab
 - Operates first on the surface at Fermilab

<u>Scintillator</u>

(3 million gallons)

- We have blended 4,500 gallons at Fermilab
- P.O. out and deliveries continue for waveshifters - PPO and bis-MSB
- Have changed to brighter scintillator than in TDR
 - 25% more fluors = 12% more light
 - Reduce risk of weak detector signals
- Have blended 4,500 gallons at Fermilab
- <u>Next step:</u> Toll blending of scintillator for Near/Far Detectors
 - Select >1 vendor to blend 30,000 gallons each (competition)
 - Winner blends the full 3 million gallons
 - And stores a buffer of incoming mineral oil and outgoing scintillator

Waveshifting Fiber (11 million

meters)

- P.O. in place for all the fiber
- Have 100 km of fiber in hand
 - QA complete at Michigan State
 - 1st 350 km of production fiber delivered Feb 5

- <u>PVC Extrusions</u> (25,000 fifty foot objects)
- Extrusion dies on order
 - Dies expected this week
- P.O. in place to make all 16-cell extrusions for the far detector
 - 9.4 M\$
 - Vendor: Extrutech Plastics
 - ordered a new twin screw extruder capable of 1100 pounds per hour
 - Ordered on 12/16/09 (their money) once they got the Fermilab P.O. -delivered and installed last week
- QA plan in place
 - reviewed by Fermilab and ANL engineers on
 - Recommended additional automation
 - Reflectivity, Impact test,
 - Vacuum test (on alternate cells)
 - Dimensional & Flatness testing with purchased camera system
- Team working on RFP for 11 million pounds of PVC resin
 - Preproduction deliveries in April

- University of Minnesota factory
 - Lifting fixtures
 - Tables to glue two 16 cell extrusions together to form a 32 cell "module"
 - Robot to check for step at glue joint
 - Bubbler to test for leaks on multiple modules at once
 - Fiber stringer, fiber tester
 - Glue machines
- Internal engineering review of University of Minnesota factory complete
 - Some additional safety engineering required, e.g. on the lifting fixture
- Began construction of Near Detector modules on Jan 20
 - Picture shows 1st 7 Near Modules prepped for pressure tests
 - 25 modules now complete
 - Rate is 3/day, need 7/day

NOvA @ Engineer Week, Feb 17, 2010

Far Detector Module Factory progress

- NEW Warehouse rental space at the University of Minnesota for factory
 - 125,000 sq. ft
 - Use ½ for factory,
 - Other ½ for storage of incoming extrusions or outgoing assembled modules
 - This gives us buffer space
 - Regents approved in Dec 12, 2009 meeting
 - Fermilab P.O. to U.Minn. for space rental issued Jan 26
 - Owner outfitting of space for NOvA to begin soon after lease signed (goal is this week)

Electronics & DAQ Progress

- Avalanche Photo Diodes (APDs)
 - First 20 APDs with final tweaked design arrive in March
 - All 550 Near Detector APDs in hand mid July
- Front End Board (FEB) v4 design done
 - Thermo-electric Cooler control board also done
 - One FEB needed per PVC module, so 32 channels per board
 - 70 Near Detector FEBs early available early May, balance of 550 in early June
- Data Concentrator Modules(DCM)
 - Each DCM reads out 64 FEBs
 - 1st production DCM boards available, 4 of them now booting up
 - Expect DCMs for the Near Detector in early May
- Time Distribution Units (TDU), GPS tag
 - 2 boards stuffed and checked, firmware development underway
 - expect TDUs for the Near Detector in mid April

Electronics & DAQ Progress

- Power Distribution
 - Final version of Power Distribution Board in circuit board design/fabrication
 - Low voltage power supply chosen (Wiener PL506)
 - High voltage power supply still in evaluation (Wiener, CAEN)
 - Mocking up the detector for PS, cable trays, cables, water cooling:

Top of detector

NOvA @ Engineer Week, Feb 17, 2010

Side of detector

Vertical Slice 5 Prototype progress

- Two full size modules at CalTech for tests
 - "Production" modules from Minnesota delivered on December 13
 - Scintillator delivery scheduled in February
 - Electronics available in March
- Cosmic ray test of 32 cells in a full length module.
 - Vertical Slices 1 4 tested short PVC with full length fibers and different scintillator mixes
 - VS-5 is the last such prototype

Vacuum Lifting fixture & Glue Machine

- The Vacuum Lifting fixture picks up a full 50 foot 10 inch long PVC module
- In the Adhesive Machine, the PVC module is rotated so the bottom side is up.
 - Next the Adhesive Machine applies a two-component adhesive to the PVC from 55 gallon drums shown in the upper right picture. The Adhesive carriage moves along rails up and down the length of the PVC module.
 - Finally the PVC module is turned right-side-up and removed from the machine to be placed on the block under construction.

Start rotation

NOvA @ Engineer Week, Feb 17, 2010

apply adhesive

Near Detector Assembly progress

This is a big device on its own

- 220 tons, about 14 meters long
- Similar in size to NuTev but (not as dense)
- Prototype near detector block
 - 29/31 layers dry stacked (Jan 21 at ANL)
 - Learn stacking/alignment techniques
 - Glued assembly started last week
- <u>Real</u> Near detector block assembly begins in mid March
- Muon Catcher Design complete
 - 10 layers of 4" steel with a layer of PVC modules after each layer

Near Detector Building progress

- New building near MINOS service building
 - Precast concrete construction VERY fast
 - Construction started Dec 7
 - Walls up in 2 working days Jan 26/27
 - Roof, windows, roll-up door last week
 - Pour concrete floor week tomorrow

Near Detector Building progress

Full mock up of catwalks and movable platform above the detector

- Learn about assembly issues at Ash River
- Reduce risk for Ash River assembly

Plan View

...

NOvA @ Engineer Week, Feb 17, 2010

Near Detector Cavern progress

"Tee" gives more sq ft for secondary containment; Wider hall would stress pillar

- New NUMI Cavern 300 ft underground
 - Kick Off meeting with Montgomery, Watson, Harza; Cavern A&E Firm, Dec 4, 2009
 - "As built" of NuMI areas complete
 - Life Safety Report came in Feb 10
 - Project Definition Report due March 19
 - Design 50% complete due Sept 1
 - Completed Design due Dec 10
- The cavern gets constructed during the 2012 shutdown for Recycler work

- Unique Structure
- 5 stories high
- 220 feet long, 930 layers
- MADE of PLASTIC
- Filled with liquid
- Assembly in 30 Blocks
 - 1 block has 31 planes
 - Each plane has 12 extrusion modules built on a flat table
 - Extensive FEA and review of design

 Lifts 143 ton (empty) blocks from flat assembly position to vertical detector position

PVC as a structural material: Creeps under stress

NOvA @ Engineer Week, Feb 17, 2010

Far Detector Assembly

- Build Thirty 31 plane blocks on a flat table
- When vertical and filled with liquid scintillator, the blocks swell at the bottom and the PVC creeps

- <u>Superblock</u> consists of 5 blocks "touching" < 2-3 mm = not observable
- Leave expansion gap of 20 mm between Superblocks
 - When filled with scintillator, a superblock swells by 20 mm near the bottom of the blocks
- Fill during construction to speed assembly time
 - Filling follows by about a superblock
- Initial bookend is south granite wall
- Finally install strong bookend at end to resist further PVC deformation

NOvA @ Engineer Week, Feb 17, 2010

All superblocks up, 5 full

Far Detector Assembly progress

- Full Height Engineering Prototype (FHEP)
 - 1/6th of final pivoter needed at Ash River
 - Pivoter Table and bookend in hand
 - Drive system & wheels in hand
 - Test pivoter in early April at CDF
 - All FHEP modules in hand

VA

FHEP PVC assembly begins in June

FHEP Pivoter in CDF Assembly Pit

 NOvA comes out of the 2012 shutdown with <u>> half of the Far Detector</u> taking data & the full Near Detector in place and taking data.

Reminder of just how big the Far Detector and Building are:

