MAP Acceleration Status Update: IDS-NF, EMMA, and Fast Ramping Synchrotrons

J. Scott Berg Brookhaven National Laboratory MAP Friday Meeting 7 May 2010

Outline

○IDS-NF Updates from plenary meeting EMMA experiment Status update Simulation work Fast ramping synchotron First minimal look at lattice design

IDS-NF Introduction

- International Design Study for the Neutrino Factory
- Reference design report by end 2012
- Intermediate design report by end 2010 (!)
 Includes full design for baseline
 Rough engineering and costing
 Plenary meeting in April
 Main goal: make baseline choices

IDS-NF Acceleration

Four stages Linac to 0.9 GeV Two RLAs to 12.6 GeV Linear non-scaling FFAG to 25 GeV Designs for first three stages well-established

IDS-NF: Low-Energy Acceleration Progress

Some magnet engineering is being done
 Linac simulated in different tracking codes
 Using field maps
 Matching to cooling channel

IDS-NF: Low-Energy Acceleration Alternatives

- Replacing linac solenoids with quadrupoles
 - Appears to have a cost advantage (based on model)
 - Won't work at start: transverse beam size
 Gain likely modest: cost dominated by RF
- Scaling FFAG to 3.6 GeV to 12.6 GeV
 - □ Accelerate in 6 turns, 1.8 GV of RF
 - About 1 km circumference
 - \Box Superconducting magnets (\geq 4 T)

IDS-NF: FFAG

Chose basic lattice cell

Triplet with 3 m drifts

Longer drift: injection/extraction easier

□ Two-cell RF cavities

- Faster acceleration, reduced effect of time of flight dependence on transverse amplitude
- Modest cost penalty over shorter drifts with single RF cell

IDS-NF: Beam Loading

 Bunch structure: 3 trains in rapid succession ONeed time between trains to top off cavities FFAG has most passes through cavities \odot Minimum 80 μ s spacing between trains 12 passes through cavities □ 1 MW power input to cavities Important for proton driver design

EMMA Experiment Introduction

- Study beam dynamics in linear non-scaling FFAG
- Accelerate electrons from 10 to 20 MeV
 - Inject and extract anywhere in this range
- 016.6 m circumference
- At Daresbury Laboratory (UK)

EMMA Experiment Ring Layout

EMMA Experiment Status

- Currently under construction
- To get started earlier, put beam into 4/7 of ring (mid-June)
 - Injection
 - Single cell symmetry: approximately measure closed orbit, tunes, time of flight
 - Tune up main lattice parameters
 - Maybe some other experiments

Algorithms for measurements from limited data

EMMA Experiment Construction

EMMA Experiment Tune Measurement Algorithms

13

EMMA Experiment Injection Kickers

- Biggest challenge: injection kicker system
 Dulag foll time not as short as usa'd like
- Pulse fall time not as short as we'd like
- Significant ringing after pulse
- Ourrent solution: two-kick injection

Beam placed on closed orbit on second pass
 Tricky with acceleration, chromaticity

EMMA Experiment **Injection Pulse**

10 Ω and 2 variators; 11 waveforms

Hybrid Fast-Ramping Synchrotron: Overview

- Accelerate to highest energy with fast-ramping synchrotron
- Good efficiency: many passes through cavities
- Maintain high average field: hybrid
 - 8 T superconducting magnets
 Ramping dipoles from -1.8 T to +1.8 T
 Quadrupoles ramp also
- ${\scriptstyle \bigcirc}\, \text{Keep}$ beam synchronized with RF

Fast Ramping Synchrotron Lattice Design

• Start with Don's hybrid FODO lattice • Momentum range 400–937 GeV • 103 cells, 2π km circumference

Fast Ramping Synchrotron Lattice Constraints

- Define reference momentum: zero field in ramping dipoles
- Tunes same as tunes at reference momentum
 - Assumed linear quad ramp from Don's values to get reference tune
- Time of flight same as reference
- All ramping dipoles have same fields
- Ramping quads independent

Fast Ramping Synchrotron Results

- Closed orbit excursion at F quad: -25 +8 mm
 Even less in D
- Fields vs. momentum indistinguishable by eye from linear fit
- No straights for cavities, etc.

Fast Ramping Synchrotron Next Steps

- Pick momentum range, max at 750 GeV
- Add straight sections for RF, etc.
 - Can closed orbit motion be suppressed in straights?
 - Maintaining time of flight is the challenge
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

