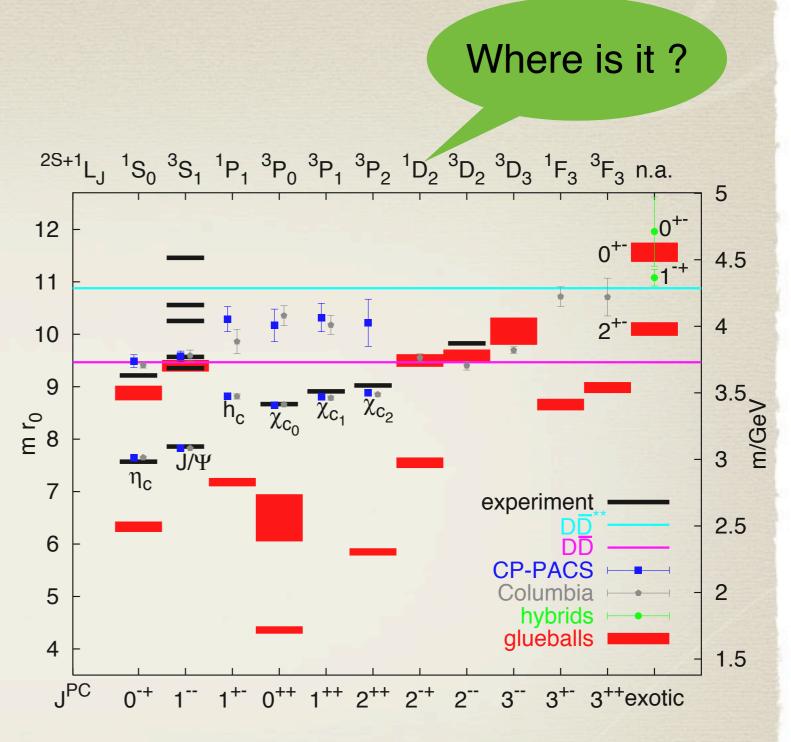
PREDICTIONS OF LIGHT HADRONIC DECAYS OF HEAVY QUARKONIUM ¹D₂ STATES IN NRQCD

Ying Fan Peking University

In collaboration with Z.G.He, Y.Q.Ma & K.T.Chao Phys.Rev.D80:014001,2009 Phys.Rev.Lett.101:112001,2008 Phys.Rev.D81:074032,2010

May 19th,2010 QWG7 at Fermilab

Outline


* Introduction and motivation ***** Decay width determination in NRQCD *** Results and Discussions** * Non- $D\bar{D}$ annihilation decay of $\Psi(3770)$ * Summary

INTRODUCTION & MOTIVATION

the only missing low lying spin-singlet state in
the charmonium family

mass (between 3.80 and 3.84 GeV) below D*D threshold (3.87GeV)

 $\begin{array}{c} \overleftrightarrow{} & \text{Odd parity forbids its} \\ & \text{decay to } D\overline{D} \end{array}$

a narrow resonance state

★ see CERN Yellow Report, CERN-2005-005 for this figure

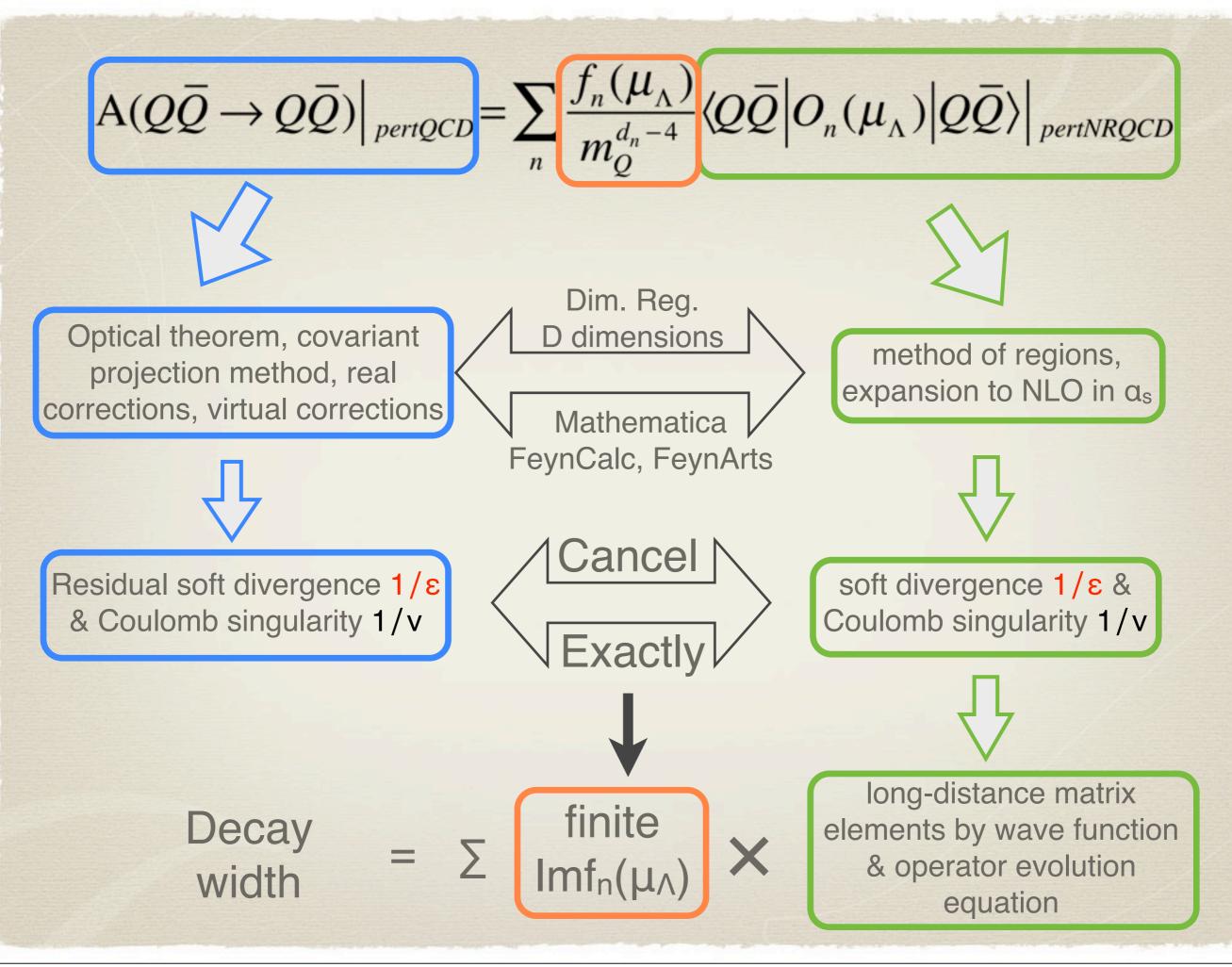
 $\overrightarrow{\mathbf{x}}$

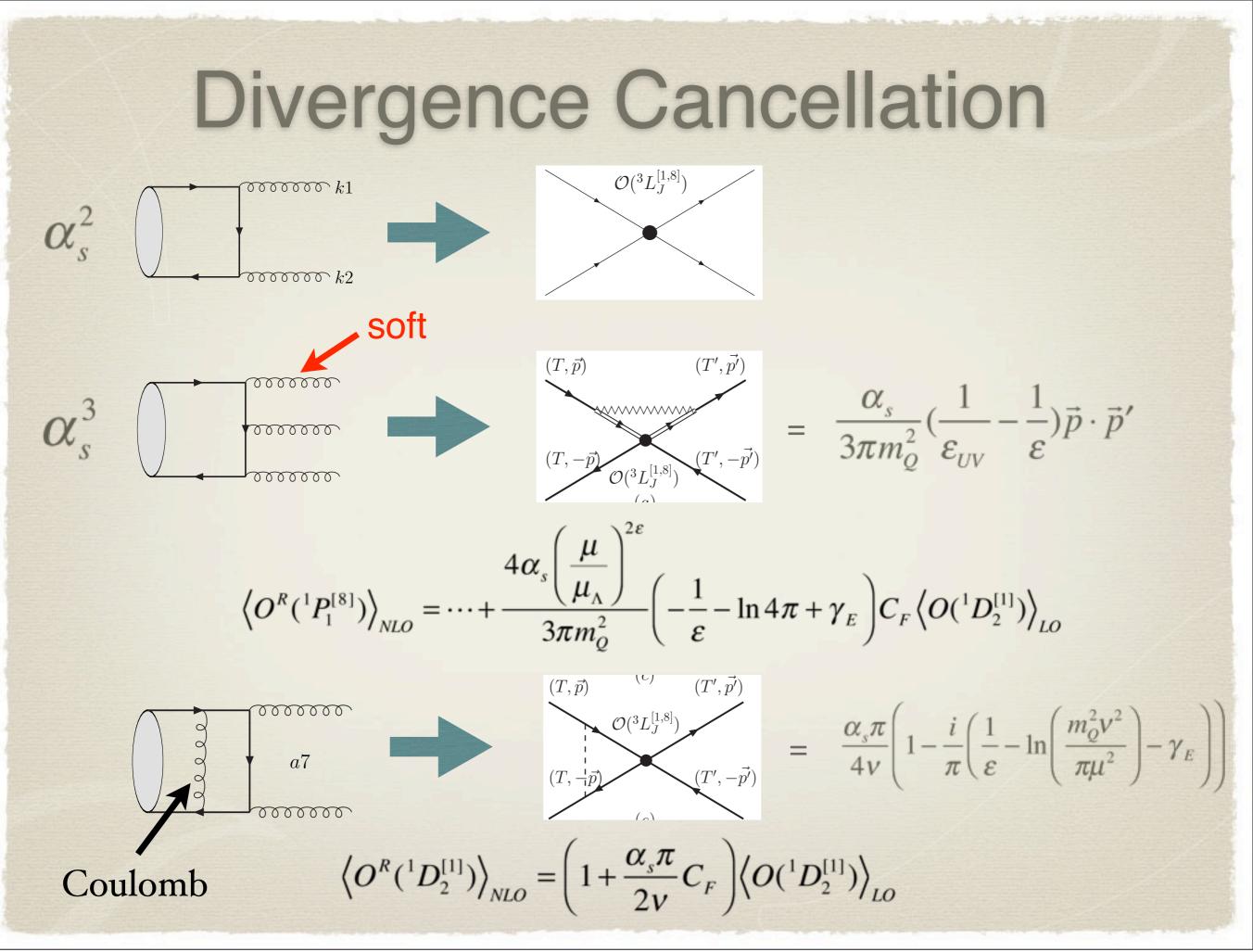
Main Decay Modes

Decay Modes	Theoretical Evaluation (keV)	References	
$\eta_{c2} \rightarrow \gamma h_c$	339-375	Barnes, Godfrey & Swanson (2005); Li &Chao (2009)	
$\eta_{c2} \rightarrow \pi \pi \eta_{c}$	≈ 45	Eichten, Lane & Quigg (2002)	
η _{c2} → light hadrons	110	Eichten, Lane & Quigg (2002)	
	274-392	Fan, He, Ma & Chao (2009)	

DECAY WIDTH DETERMINATION IN NRQCD

Decay width in NRQCD


short-distance coefficients


 $\Gamma(H \to LH) = \sum_{n} \frac{2 \operatorname{Im} f_n(\mu_{\Lambda})}{m_O^{d_n - 4}}$

long-distance matrix elements

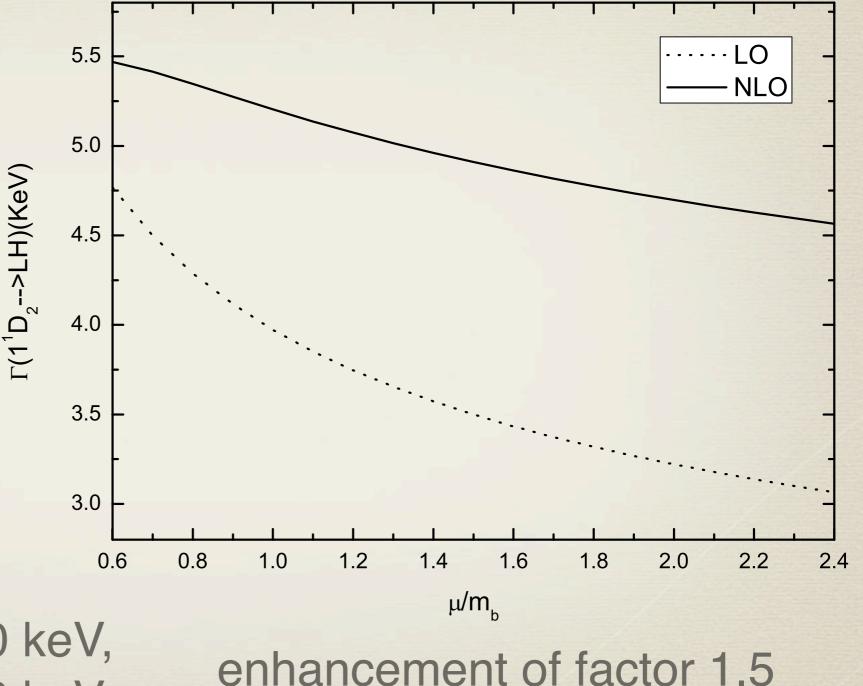
 $O_n(\mu_\Lambda) | H \rangle$

 $|{}^{1}D_{2}\rangle = O(1)Q\bar{Q}({}^{1}D_{2}^{[1]})\rangle + O(v)Q\bar{Q}({}^{1}P_{1}^{[8]})g) + O(v^{2})Q\bar{Q}({}^{1}S_{0}^{[1,8]})gg\rangle + \cdots$ Color Singlet Model Color-Octet Mechanism

The long-distance matrix element of D-wave color-singlet operator is related with the second derivative of radial wave function at the origin:

$$\left\langle n^{1}D_{2}\left|O(n^{1}D_{2})\right|n^{1}D_{2}\right\rangle = \frac{15\left|R_{nD}^{''}(0)\right|^{2}}{8\pi}$$

P-wave and S-wave matrix elements are given by operator evolution equations


$$\left< \frac{1^{1}D_{2}}{O^{R}({}^{1}P_{1}^{[8]})(\mu_{\Lambda})} \right| 1^{1}D_{2} \right> = \frac{8C_{F}}{3m_{Q}^{2}b_{0}} \ln \frac{\alpha_{s}(\mu_{\Lambda_{0}})}{\alpha_{s}(\mu_{\Lambda})} \left< 1^{1}D_{2} \right| O({}^{1}D_{2}^{[1]}) \left| 1^{1}D_{2} \right>$$

 \therefore m_c=1.5GeV, v²=0.3, $\mu_{\Lambda 0}$ =m_cv, μ_{Λ} =2m_c, α_{s} (2m_c)=0.249, N_f=3, Λ_{QCD} =390MeV

Subprocess	short-distance	long-distance(MeV)
(¹ S ₀) ₁ →LH	$8.38\alpha_s^2 + 29.6\alpha_s^3$	0.0368
(¹ S ₀) ₈ →LH	$2.62\alpha_s^2 + 11.4\alpha_s^3$	0.0920
(¹ P ₁) ₈ →LH	$1.57\alpha_s^2$ +6.18 α_s^3	0.680
$(^{1}D_{2})_{1} \rightarrow LH$	$1.12\alpha_s^2 + 1.67\alpha_s^3$	0.786

Results and Discussions α_s^2 155 keV • S-singlet • S-octet • P-octet • D-singlet 500 12% $\cdot \cdot LO$ 450 35% NLO 10% 400 -3% 274 keV 1/1^{D2---}2/1 43% 350 300 α_s^3 250 200 13% 150 27% 11% 1.2 0.6 0.8 1.0 1.6 1.8 2.0 2.2 1.4 2.4 μ/m_c 48% enhancement of factor 1.8

 $(x) m_b = 4.6 GeV,$ $v^2 = 0.1, \mu_{\Lambda 0} = m_b v,$ $\mu_{\Lambda} = 2m_b, \alpha_s(2m_b)$ $= 0.180, N_f = 4,$ $\Lambda_{QCD} = 340 MeV$

 $\Gamma_{B}(1^{1}D_{2}\rightarrow LH)=4.70 \text{ keV},$ $\Gamma_{B}(2^{1}D_{2}\rightarrow LH)=8.78 \text{ keV}.$

Γ(η _{c2} →LH)	274-392 keV	
$\Gamma(\eta_{c2} \rightarrow \gamma h_c)$	339-375 keV	
$\Gamma(\eta_{c2} \rightarrow \pi \pi \eta_c)$	≈ 45 keV	
F total	660-810 keV	

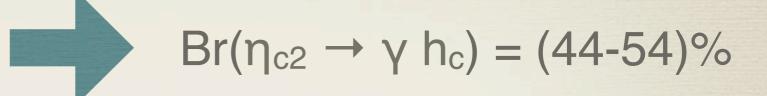
 \simeq searching through $\eta_{c2} \rightarrow \gamma h_c \rightarrow \gamma \gamma \eta_c \rightarrow \gamma \gamma K \overline{K} \pi$

 \gtrsim Spin-singlet nature forbids η_{c2} to couple to a photon, or to be detected from the E1 transitions of higher spin-triplet charmonia

☆ Production rates are suppressed by the small values of the second derivative squared of the wave function at the origin

The study for the inclusive light hadronic decay of η_{c2} in NRQCD will provide useful information on searching in high-energy $p\bar{p}$ collision, in B decay, in higher charmonium transitions, in e⁺e⁻ process in BESIII at BEPC, and in the low-energy $p\bar{p}$ reaction in PANDA at FAIR.

Γ(η _{c2} →LH)	274-392 keV	
$\Gamma(\eta_{c2} \rightarrow \gamma h_c)$	339-375 keV	
$Γ(η_{c2} → ππη_c)$	≈ 45 keV	
F total	660-810 keV	


 \simeq searching through $\eta_{c2} \rightarrow \gamma h_c \rightarrow \gamma \gamma \eta_c \rightarrow \gamma \gamma K \overline{K} \pi$

 \gtrsim Spin-singlet nature forbids η_{c2} to couple to a photon, or to be detected from the E1 transitions of higher spin-triplet charmonia

☆ Production rates are suppressed by the small values of the second derivative squared of the wave function at the origin

The study for the inclusive light hadronic decay of η_{c2} in NRQCD will provide useful information on searching in high-energy $p\bar{p}$ collision, in B decay, in higher charmonium transitions, in e⁺e⁻ process in BESIII at BEPC, and in the low-energy $p\bar{p}$ reaction in PANDA at FAIR.

Γ(η _{c2} →LH)	274-392 keV	
$\Gamma(\eta_{c2} \rightarrow \gamma h_c)$	339-375 keV	
$Γ(η_{c2} → ππη_c)$	≈ 45 keV	
F total	660-810 keV	

 \simeq searching through $\eta_{c2} \rightarrow \gamma h_c \rightarrow \gamma \gamma \eta_c \rightarrow \gamma \gamma K \overline{K} \pi$

 \gtrsim Spin-singlet nature forbids η_{c2} to couple to a photon, or to be detected from the E1 transitions of higher spin-triplet charmonia

☆ Production rates are suppressed by the small values of the second derivative squared of the wave function at the origin

The study for the inclusive light hadronic decay of η_{c2} in NRQCD will provide useful information on searching in high-energy $p\bar{p}$ collision, in B decay, in higher charmonium transitions, in e⁺e⁻ process in BESIII at BEPC, and in the low-energy $p\bar{p}$ reaction in PANDA at FAIR.

Previous work in NRQCD

- * Removed the infrared divergences in inclusive P-wave charmonium
 - * Production: Bodwin, Braaten, Yuan & Lepage (1992);
 - * Decay : Bodwin, Braaten & Lepage(1995); Huang & Chao (1996,1997).
- * Removed the infrared divergences in the Color Singlet Model calculation of inclusive light hadronic decays of ³D_J charmonium states.

* Belanger & Moxhay (1987): $\Gamma({}^{3}D_{1} \rightarrow 3g) = \frac{48640}{81\pi}$

$$rac{\alpha_s^3 |R_D''(0)|^2}{M^6} \ln rac{M}{\Delta}$$

* Bergstrom & Ernstrom (1991).

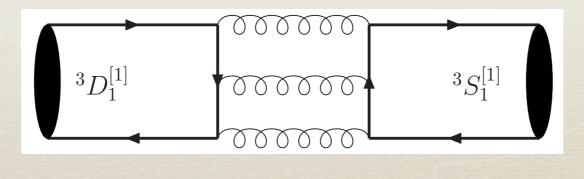
NON- $D\overline{D}$ ANNIHILATION DECAY OF $\Psi(3770)$

Motivation

Collaboration	B _r (Ψ(3770)→non- <i>DD</i>)	References
BES	(14.5±1.7±5.8)%	PLB 641,145 (2006)
	(16.4±7.3±4.2)%	PRL 97,121801 (2006)
	(13.4±5.0±3.6)%	PRD 76,122002 (2007)
CLEO	≅0	PRL 96,092002 (2006)
	(-3.3±1.4 ^{+6.6})%, <9%	PRL 104,159901 (2010)

Very different results !

Light Hadronic Decay of W(3770)


 $\swarrow \Psi(3770)$ viewed as 1³D₁ dominated with small admixture of 2³S₁ (Rosner,2001)

$$|\psi(3770)\rangle = \cos\theta |1^{3}D_{1}\rangle + \sin\theta |2^{3}S_{1}\rangle$$
$$|\psi(3686)\rangle = -\sin\theta |1^{3}D_{1}\rangle + \cos\theta |2^{3}S_{1}\rangle$$

 \Leftrightarrow S-D mixing angle $\theta \approx (12\pm2)^{\circ}$, by fitting the leptonic decay widths of $\Psi(3770)$ and $\Psi(3686)$

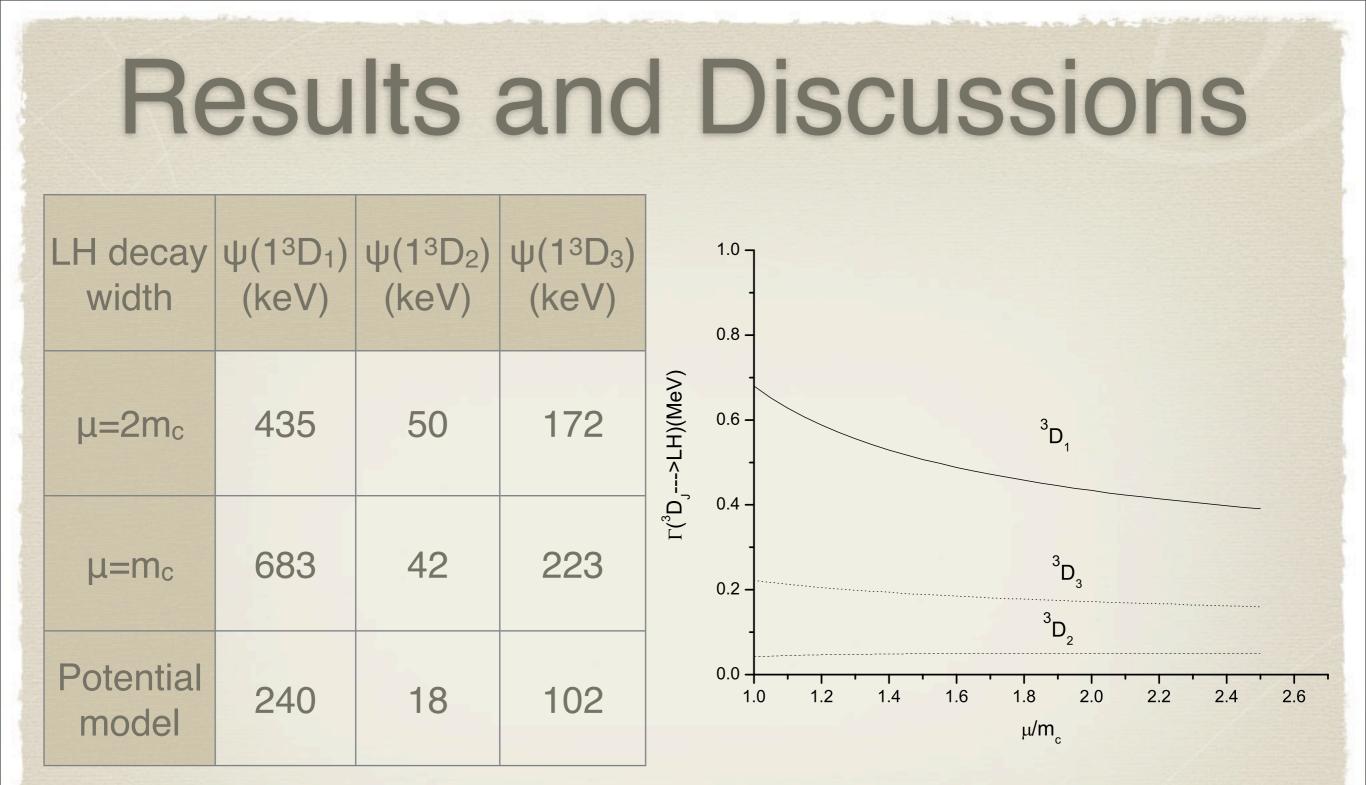
 \therefore Light hadronic decay width of $\Psi(3770)$ is

 $\Gamma(\psi(3770) \rightarrow LH) = \cos^2 \theta \Gamma(1^3 D_1 \rightarrow LH) + \sin^2 \theta \Gamma(2^3 S_1 \rightarrow LH) + \text{ interference term}$

Subprocess	as ² (keV)	a _s ³ (keV)
(³ S ₁) ₁ →LH	0	0.24
(³ S ₁) ₈ →LH	18	33
(³ P ₀) ₈ →LH	184	410
(³ P ₁) ₈ →LH	0	-5.8
(³ P ₂) ₈ →LH	2.5	4.4
(³ D ₁) ₁ →LH	0	-10
Total	205	436

 \Rightarrow m_c=1.5±0.1GeV,

Γ(Ψ(3770)→LH)=467⁻¹⁸⁷₊₃₃₈ keV

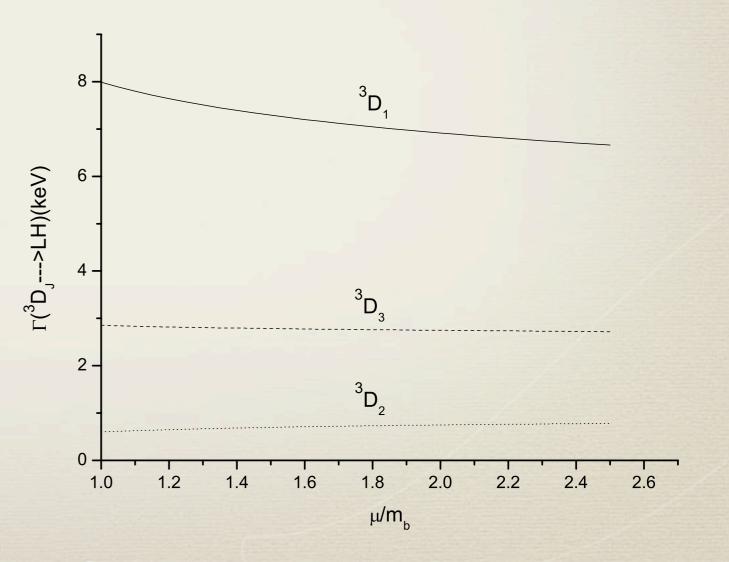

- ☆ Total decay width(PDG06)Γ(Ψ(3770)→anything)=23.0±2.7 MeV
- ↔ Branching ratio B_r(Ψ(3770)→LH)=(2.0^{-0.80}_{+1.50})%
- \simeq E1 transition

Γ(Ψ(3770)→Υ+χ_{CJ})=250±50 keV

☆ Hadronic transition

Γ(Ψ(3770)→J/ψ+LH)=100~150 keV

☆ Final result $\Gamma(\Psi(3770) \rightarrow \text{non-}D\overline{D}) = 1.15 \sim 1.20 \text{ MeV}$ $B_r(\Psi(3770) \rightarrow \text{non-}D\overline{D}) \cong 5\%$



NRQCD predictions about 2~3 times larger than potential model results

LH decay width	Υ(1 ³ D ₁) (keV)	Υ(1 ³ D ₂) (keV)	Y(1 ³ D ₃) (keV)
µ=2m _b	6.91	0.75	2.75
µ=m _b	7.99	0.60	2.85
Potential model	5.4	0.51	2.3

LH decay
width $\Upsilon(2^{3}D_{1})$
(keV) $\Upsilon(2^{3}D_{2})$
(keV) $\Upsilon(2^{3}D_{3})$
(keV) $\mu=2m_{b}$ 12.91.405.14 $\mu=m_{b}$ 14.91.215.33

To some extent, potential model estimations are in agreement with our NRQCD numerical predictions with $\mu=2m_b$.

SUMMARY

Summary

- * Prediction of ¹D₂ state in NRQCD will help find this missing state in experiment
- * Light hadronic decay width of $\Psi(3770)$ was also determined in NRQCD, and the non- $D\bar{D}$ annihilation decay branching ratio does not favor BES or CLEO results
- * ³D_J decay widths have also been predicted, and compared with potential model results too.
- * More experiment analyses are needed to test theoretical predictions

THANK YOU !

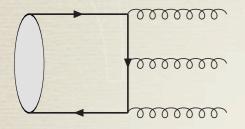
BACK UP

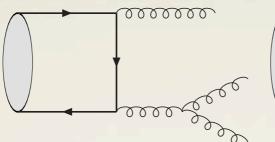
³D₁ inclusive decay in CSM

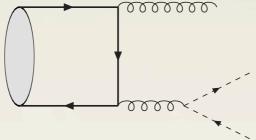
color factor^{4,5} 5/18 (for color-triplet quarks). The choice of the infrared cutoff is ambiguous in the case of a quark-antiquark bound state; a procedure which works reasonably well in the *P*-wave case^{1,2,4,5} is to assume an infrared cutoff $\Delta \sim \langle r \rangle^{-1}$, where $\langle r \rangle$ is the radius of the bound state. Then, defining the bound-state mass $M \approx 2m$, we find for three-gluon annihilation of quarkonium:

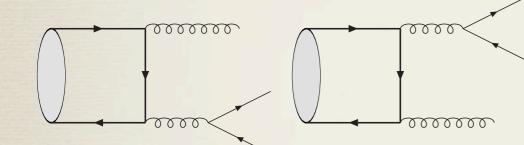
$$\Gamma(^{3}D_{1} \rightarrow 3g) = \frac{48640}{81\pi} \frac{\alpha_{s}^{3} |R_{D}^{''}(0)|^{2}}{M^{6}} \ln \frac{M}{\Delta}$$
,

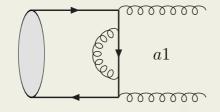
γ⁵ scheme & projection operator

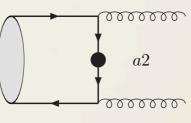

 $\gamma^{5} = -\frac{i}{4!} \epsilon^{\mu\nu\rho\sigma} \gamma_{\mu} \gamma_{\nu} \gamma_{\rho} \gamma_{\sigma}$ D dimensions; equivalent to the naive γ^{5} scheme for processes where each closed fermion chain contains at most one γ^{5}

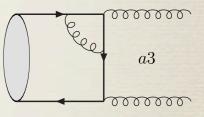

$$\Pi^{0} = \frac{1}{2\sqrt{2}(E_{Q} + m_{Q})} (\frac{P}{2} + q + m_{Q}) \frac{[(P + M)\gamma^{5} + \gamma^{5}(-P + M)]}{2M} (\frac{P}{2} - q - m_{Q})$$

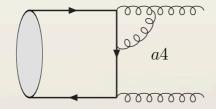

$$\Pi^{0} = \frac{1}{2\sqrt{2}(E_{Q} + m_{Q})} (\frac{P}{2} + q + m_{Q}) \frac{(P + M)\gamma^{5}(-P + M)}{2M^{2}} (\frac{P}{2} - q - m_{Q})$$

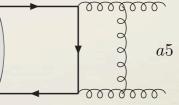

the above two projection operators both give correct results and keep **C** parity conservation

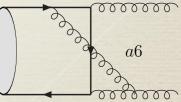

Feynman Diagrams

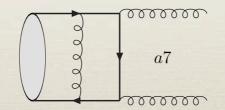


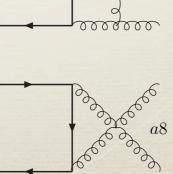


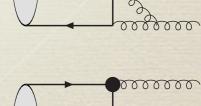


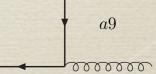












a8

