
Quark masses and strong 
coupling constant 
from Lattice QCD

Christine Davies
University of Glasgow
HPQCD collaboration

Quarkonium Working Group meeting, 
May 2010
Saturday, 15 May 2010



Preview of punchline - Lattice QCD is best 
method for extracting QCD parameters
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Quark confinement complicates the comparison of 
perturbative QCD to experiment for eg. jet shapes etc

CDF

But simple properties of hadrons (e.g. masses) can now 
be accurately calculated in lattice QCD               QCD 
parameters in Lagrangian can be very accurately tuned. 
Issue is converting to non-lattice renormln schemes.
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Lattice QCD =  fully nonperturbative 
QCD calculation 
RECIPE
• Generate sets of gluon fields for 
Monte Carlo integrn of Path Integral
(inc effect of sea quarks)
• Calculate averaged “hadron 
correlators” from valence q props. 

• Fix       and      to get physical results 
- extrapolate to real world

amq

• Fit for hadron masses and decay 
constants.

< 0|M†(0)M(t)|0>

a
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Overview: The gold-plated meson spectrum - HPQCD 

Error 6 MeV
using HISQ
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Accuracy in spectrum requires accurate discretisation of quarks in lattice QCD...
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Charm quarks in lattice QCD - heavy or light?

Key issue is discretisation errors:

Advantages of relativistic light quarks: 
•
• PCAC relation (if enough chiral symmetry) gives                  
• same action as for u, d, s, so cancellation in ratios

Esim = m
Z = 1

mca≈ 0.4, (mca)2 ≈ 0.2, αs(mca)2 ≈ 0.06, (mca)4 ≈ 0.04

Need to remove all of these errors for precision results

m= ma=0(1+A(mca)2+B(mca)4+ . . .

a≈ 0.1 fmfor

This is done in Highly Improved Staggered Quarks (HISQ) 
formalism, further improving Improved Staggered Quarks

E. Follana et al, HPQCD, hep-lat/0610092
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Has led to stunning accuracy in charm physics 
e.g. 2% errors in E. Follana et al, HPQCD, 0706.1726

Now using for even heavier quarks, up to bottom: 
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Determination of quark masses in             schemeMS

• Direct method: Determine                 in lattice QCD. 
mq,MS = Zmq,latt

mq,latt

Calculate Z in lattice QCD pert. th. or use ‘nonpert’ 
lattice matching. 
Best direct error on ms 5% from         pert. theory.α2

s

 Q. Mason et al, HPQCD, hep-lat/0511160

• Current-current correlator method: match time-moments 
of heavy-heavy meson correlators to 

J J
energy-derivative moments at 
of heavy quark  vac. pol. calculated 
in continuum QCD pert. th. (thru       )
 HPQCD + Chetyrkin et al, 0805.2999

q2 = 0

see C. Sturm talk

α3
s
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Lattice calculation: first pass

• Fix mq to        in correlators by getting           correct. mc mη!

• Calculate time moments and ratio to tree level (‘free’) .

G(t) = a6
∑

!x

(amc)2 < 0|j5(!x, t)j5(0, 0)|0 >

Gn =
∑

t

(t/a)nG(t)

Rn,latt = G4/G(0)
4 n = 4

=
amηc

2amc
(Gn/G(0)

n )1/(n−4) n = 6, 8, 10 . . .

 HPQCD + Chetyrkin et al, 0805.2999

• extrapolate to a=0 (and physical sea quark masses). 
Saturday, 15 May 2010
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III. QCD SIMULATIONS

A. Reduced Moments

The biggest challenge when using lattice QCD to
produce c-quark correlator moments is controlling: 1)
O((amc)n) errors caused by the lattice approximation;
and 2) tuning errors in the QCD parameters, and espe-
cially in the lattice spacing and the c-quark’s bare mass.
We reduce each of these sources of error by making two
modifications to the moments.

First we replace Gn by

Gn

G(0)
n

=
gn

g(0)
n

(

m(0)
pole,c

mc(µ)

)n−4

+ O((amc)
mαs) (5)

where G(0)
n is the nth moment of the correlator to lowest

order in lattice QCD perturbation theory [21], and g(0)
n

is the lowest-order part of gn in continuum perturbation
theory. The lowest-order on-shell or “pole” mass of the
c-quark sets the mass scale in the lowest-order lattice
moments:

G(0)
n =

g(0)
n

(am(0)
pole,c)

(n−4)
+ O((amc)

m) (6)

In the HISQ formalism, this mass is related to the mass
m0c that appears in the action by [14]:

m(0)
pole,c = m0c

(

1 −
3 (am0c)4

80
+

23 (am0c)6

2240

+
1783 (am0c)8

537600
−

76943 (am0c)10

23654400
+ · · ·

)

. (7)

Introducing G(0)
n removes the explicit factors of the lat-

tice spacing in the denominator of Eq. (4), and also can-
cels finite-a errors to all orders in a and zeroth order
in αs. Thus we expect finite-a errors that are reduced by
a factor of order αs(1/a) ≈ 1/3 when we divide Gn by
the corresponding lowest-order lattice moment; and we
find in practice that they are 3–4 times smaller.

A second modification is to replace the pole mass in

Gn/G(0)
n by the value of the ηc mass obtained from the

simulation, amηc
(in lattice units) [22]:

Gn

G(0)
n

(

amηc

2am(0)
pole,c

)n−4

=
gn

g(0)
n

(

mηc

2mc(µ)

)n−4

(8)

up to O((amc)mαs) corrections. With this additional
factor, the leading dependence on mc(µ) enters through
the ratio mc(µ)/mηc

. Consequently small errors in the
simulation parameter am0c are mostly cancelled in this
expression by corresponding shifts in the simulation value
for amηc

. This cancellation is accurate up to binding cor-
rections of order (vc/c)2 ≈ 1/3 in mηc

, and therefore the

FIG. 1: Reduced moments Rn and a ratio of these moments
from lattice simulations with different lattice spacings a. The
tight clusters of points at each of the three largest lattice
spacings correspond to results for different sea-quark masses.
The dashed lines show the functions used to fit the lattice
results, with the sea-quark masses set equal to the masses used
at the smallest lattice spacing. These extrapolation functions
were used to obtain the a = 0, mu/d/s = 0 results shown in
the plot.

impact of any tuning error in m0c is three times smaller
with this modification [23].

Combining these two modifications, we replace Gn by
a reduced moment:

Rn ≡











G4/G(0)
4 for n = 4,

amηc

2am(0)
pole,c

(

Gn/G(0)
n

)1/(n−4)
for n ≥ 6,

(9)

The reduced moments can again be written in terms of
continuum quantities:

Rn ≡







r4(αMS, µ/mc) for n = 4,

rn(αMS, µ/mc)

2mc(µ)/mηc

for n ≥ 6,
(10)

up to O((amc)mαs) corrections, where rn is obtained

from gn (Eq. (4)) and its value, g(0)
n , in lowest-order con-

tinuum perturbation theory:

rn =







g4/g(0)
4 for n = 4,

(

gn/g(0)
n

)1/(n−4)
for n ≥ 6.

(11)

The c mass is obtained from Eq. (10) with n ≥ 6 using
the nonperturbative lattice QCD (LQCD) value for Rn,
the perturbative QCD (PQCD) estimate for rn, and the
experimental value for mηc

, 2.980GeV:

mc(µ) =
mexp

ηc

2

rPQCD
n

RLQCD
n

. (12)

Reduced moment R4 is dimensionless and so depends
only weakly on mc. Simulation values for this moment

Rn,cont = g4/g0
4 n = 4

=
mηc

2mc(µ)
gn/g0

n n = 6, 8, 10 . . .

gn/g0
n = 1 +

∑

i

ci(µ/m(µ))αMS(µ)i

n = 6, 8, 10 . . .

5

TABLE II: Simulation results for Rn(a, mu/d, ms) for different lattice parameter sets (see Table I). The inverse lattice spac-
ing a−1 is in GeV. Extrapolations to zero lattice spacing and zero sea-quark masses are given for each quantity, together with
the corresponding value for mc(µ) (in GeV) or αMS(µ) for nf = 4 flavors and µ = 3GeV.

Set: 1 2 3 4 5 6 7 8
a−1: 1.31 1.31 1.62 1.60 1.63 2.26 2.28 3.24 a, mu/d/s → 0 mc(µ)
R6 1.448(3) 1.447(3) 1.494(3) 1.492(3) 1.491(3) 1.514(3) 1.511(3) 1.519(3) 1.528(11) 0.986(10)
R8 1.372(3) 1.371(3) 1.387(3) 1.386(3) 1.384(3) 1.374(3) 1.373(3) 1.370(3) 1.370(10) 0.986(11)
R10 1.329(3) 1.328(3) 1.326(3) 1.326(3) 1.324(3) 1.306(3) 1.305(3) 1.304(3) 1.304(9) 0.973(19)
R12 1.294(3) 1.293(3) 1.284(3) 1.284(3) 1.281(3) 1.263(3) 1.262(3) 1.262(3) 1.265(9) 0.969(23)
R14 1.264(3) 1.264(3) 1.252(2) 1.251(2) 1.248(2) 1.232(2) 1.231(2) 1.232(2) 1.237(9) 0.967(28)
R16 1.239(2) 1.239(2) 1.228(2) 1.226(2) 1.223(2) 1.207(2) 1.206(2) 1.210(2) 1.215(9) 0.965(33)
R18 1.218(2) 1.218(2) 1.208(2) 1.205(2) 1.202(2) 1.187(2) 1.187(2) 1.191(2) 1.198(9) 0.963(38)

Set: 1 2 3 4 5 6 7 8
a−1: 1.31 1.31 1.62 1.60 1.63 2.26 2.28 3.24 a, mu/d/s → 0 αMS(µ)
R4 1.162(1) 1.161(1) 1.189(1) 1.187(1) 1.187(1) 1.223(1) 1.221(1) 1.249(1) 1.281(5) 0.252(6)

R6/R8 1.055(1) 1.055(1) 1.078(1) 1.076(1) 1.077(1) 1.101(1) 1.101(1) 1.109(1) 1.113(2) 0.249(6)
R8/R10 1.033(1) 1.033(1) 1.046(1) 1.045(1) 1.046(1) 1.052(1) 1.052(1) 1.051(1) 1.049(2) 0.224(31)
R10/R12 1.027(1) 1.027(1) 1.033(1) 1.033(1) 1.034(1) 1.034(1) 1.034(1) 1.033(1) 1.031(2) 0.241(30)
R12/R14 1.023(1) 1.023(1) 1.025(1) 1.026(1) 1.026(1) 1.025(1) 1.025(1) 1.024(1) 1.022(2) 0.243(47)
R14/R16 1.020(1) 1.020(1) 1.020(1) 1.021(1) 1.021(1) 1.020(1) 1.020(1) 1.019(1) 1.017(2) 0.242(70)
R16/R18 1.017(1) 1.017(1) 1.016(1) 1.017(1) 1.017(1) 1.017(1) 1.017(1) 1.016(1) 1.014(2) 0.241(96)

Moment R4 and the ratios of moments are more accu-
rately determined in our simulation than the other Rns,
and so typically require an additional term in the (amc)2

expansion. Again, however, the eight terms we use are
many more than the minimum needed.

Our final error estimates depend upon the widths of
our priors [29]. We tested these widths in a couple of
ways, beyond including simulation data from the coars-
est lattices. First we compared our widths with the val-
ues suggested by the empirical Bayes procedure described
in [28]. This procedure uses the variation in the data it-
self to determine, for example, an optimal value for σc.
The widths we use are two to four times larger that what
is indicated by the empirical Bayes criterion, suggesting
that our error estimates are conservative. The dominant
fit coefficients in the (amc)2 expansion for R6, for ex-
ample, range between −0.05 and −0.20, which is much
smaller than the σc = 1 we use.

As a second test, we verified that our extrapolation
procedure gives consistent results when data from either
the smallest or the largest lattice spacing is discarded.
That is, we demonstrated that results obtained from the
truncated data sets agree within errors with results from
the full set of simulation data. This shows that our error
estimates are robust even when working with limited sim-
ulation data sets. As mentioned above, our final results
are not much affected by data from the coarsest lattice
spacing. Simulation data from the finest lattice spacing,
on the other hand, has a very significant impact.

FIG. 2: mc(µ), for µ = 3GeV and nf = 4 flavors, from dif-
ferent moments of correlators built from four different lattice
operators. The gray band is our final result for the mass,
0.986 (10) GeV, which comes from the first two moments of
the pseudoscalar correlator (upper-left panel).

IV. EXTRACTING mc(µ) AND αMS(µ)

To convert the extrapolated reduced moments into
c masses and coupling constants, we require perturba-
tive expansions for the rn in Eq. (12). These are easily
computed from the expansions for gn [3, 4, 5, 6, 7, 8, 9]
using Eq. (11); details can be found in the Appendix.
The perturbative expansions have the form

rn = 1+rn,1αMS(µ)+rn,2α
2
MS

(µ)+rn,3α
3
MS

(µ)+. . . (15)

µ = 3GeV

extract        from 
ratio to 
Different j agree, 
but pseudoscalar 
best. 

mηc

mc

Can also determine
αs
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Lattice calculation: second pass  HPQCD, 1004.4285

• Repeat calcln for                     inc. ultrafine lattices
7

upon Bayesian ideas [17]. In this procedure we minimize
an augmented χ2 function of the form

χ2 =
∑

in,jm

∆Rni (σ−2
R )in,jm ∆Rmj +

∑

ξ

δχ2
ξ (32)

where:

∆Rni ≡ Rlatt
ni −Rn(µi, mηhi, ai, Nam); (33)

the Rlatt
n come from Table II with corrections from

Eqs. (26), (28) and (30); fit function Rn(. . .) is defined
by Eq. (15); and σ2

R is the error covariance matrix for
the Rlatt

n . The sums i, j are over the 22 sets of lattice
spacings and quark masses; the sums n, m range over of
the moments 4, 6, 8, 10.

Function Rn(µi, mηhi, ai, Nam) depends upon a large
number of parameters, all of which are varied in the fit
to minimize χ2. Priors δχ2

ξ are included for each of these:

• parameters zj , with prior Eq. (13), from the 1/mηh

expansion of z(µ/mh, mηh);

• parameters c(n)
ij , with prior Eq. (17), from the

finite-lattice spacing corrections;

• unknown perturbative coefficients rnj , with prior
Eq. (21) (evolved to µ/mh =3);

• coupling parameter log(α0), with prior Eq. (22);

• β4 in the QCD β-function, with prior Eq. (25);

• lattice spacings ai for each gluon configuration set,
with priors specified by simulation results for r1/a
(Table I) and the current value for r1 (Eq. (10));

• values for amηhi, with priors specified by our sim-
ulation results (Table II).

The renormalization scales µi are obtained from the ratio
µ/mh = 3, simulation results for mηh , and Eq. (7). We
take Nam =30 for our final results.

B. Results

We fit our simulation data for the reduced mo-
ments Rlatt

n (Table II) using fit function Rn(. . .)
(Eq. (15)) with Nam = 30, as discussed in the previous
section. The best-fit values for parameters zj give us the
mass-ratio function z(µ/mh = 3, mηh) (Eq. (7)), which
we plot in Figure 1. We also show our simulation re-
sults there for Rlatt

n /rn, together with the best-fit lines
for each lattice spacing. Results are shown for the three
moments that depend upon z, 5 different lattice spac-
ings, and quark masses ranging from below the c mass
almost to the b mass. The simulation data were all fit
simultaneously, using the same functions z(3, mηh) and
αMS(µ) (with µ = 3mηh/(2z)) for all moments. The fits

mηc 4 6 8 mηb

mηh (GeV)

1.3
1.4
1.5
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1.7

m
η

h
/(

2m
h
(µ

))

R10/r10

µ = 3mh(µ)

1.3
1.4
1.5
1.6
1.7

m
η

h
/(

2m
h
(µ

))

R8/r8

µ = 3mh(µ)

1.3
1.4
1.5
1.6
1.7

m
η

h
/(

2m
h
(µ

))

R6/r6

µ = 3mh(µ)

FIG. 1: Function z(µ/mh = 3, mηh)≡mηh/(2mh) as a func-
tion of mηh . The solid line, plus gray error envelope, shows
the a = 0 extrapolation obtained from our fit. This is com-
pared with simulation results for Rn/rn for n = 6, 8, 10 from
our 5 different lattice spacings, together with the best fits
(dashed lines) corresponding to those lattice spacings. Dashed
lines for smaller lattice spacings extend further to the right.
The points marked by an “x” are for the largest mass we
tried (last line in Table II); these are not included in the fit
because amηh is too large. Finite-a errors become very small
for the larger-n moments, causing points from different lattice
spacings to overlap.

are excellent, with χ2/88 = 0.19 for the 88 data pieces of
simulation data we fit.

Evaluated at mηc = 2.985(3) GeV [24], the mass-
ratio function is z(3, mηc) = 1.507(7). Combining this
with Eq. (9) and perturbation theory, we can obtain the
following results for the MS c-quark mass at different
scales:

mc(3mc, nf = 3) = 0.991(5) GeV, (34)
mc(3 GeV, nf = 4) = 0.986(6) GeV,

mc(mc, nf = 4) = 1.273(6) GeV.

Similarly at mηb = 9.395(5) GeV [25], the mass-ratio
function is z(3, mηb)=1.296(8), and we obtain the follow-
ing results for the MS b-quark mass at different scales:

mb(3mb, nf = 3) = 3.623(22) GeV. (35)
mb(10 GeV, nf = 5) = 3.618(25) GeV,

mb(mb, nf = 5) = 4.165(23) GeV.

11

0.116 0.118 0.120
αMS(MZ , nf =5)

0.1186(4)
0.1184(4)
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FIG. 5: Updated values for the 5-flavor αMS at the Z-meson
mass from each of 22 different short-distance quantities built
from Wilson loops. The gray band indicates a composite av-
erage, 0.1184(6). χ2 per data point is 0.3.

VII. CONCLUSIONS

In this paper, we improve significantly on our previous
determinations of the QCD coupling and c-quark mass
from heavy-quark correlators. This is principally due to
the inclusion of a new, smaller lattice spacing in our anal-
ysis. We also generated results for a variety of quark
masses near mc, allowing us to interpolate more accu-
rately to the physical value of mc. New third-order per-
turbation theory makes R10 as useful now as R4, R6, and
R8 were in the earlier paper. Finally, in this paper, we
fit multiple moments simultaneously, determining con-
sistent values simultaneously for both the QCD coupling
and the quark masses for all moments. Previously we ex-
amined each moment or ratio of moments independently,
extracting mcs or αMSs independently of each other. Our

3 4 5 6 7 8 9
mηh

0.9
1.0
1.1
1.2
1.3
1.4
1.5

m
η

h
/(

2m
h
(µ

)) µ =

3mh

mh

mh/2

FIG. 6: z(µ/mh, mηh) versus mηh for three different values
of µ/mh. The curve for µ = 3mh comes from the best fit
to the moments. The other curves are obtained by evolving
perturbatively from µ=3mh.

mηc 4 6 8 mηb

mηh (GeV)

1.2

1.3

1.4

1.5

1.6

1.7

R
n
(a

,m
η

h
)

R6

R8R10

FIG. 7: Simulation results for reduced moments Rn with n=
6, 8, 10 as functions of mηh for 5 different lattice spacings.
The dashed lines show the corresponding behavior of our fit
function, with the best-fit parameters. The curves for smaller
lattice spacings extend further to the right. The solid lines
show the a=0 limit of our best fit.

new results,

mc(3 GeV, nf = 4) = 0.986(6) GeV (47)
αMS(MZ , nf = 5) = 0.1183(7),

agree well with our older results of 0.986(10) GeV and
0.1174(12), respectively [1].

The much heavier b quark is usually analyzed using ef-
fective field theories like NRQCD or the static-quark ap-
proximation. By using very small lattice spacings and the
very highly improved HISQ discretization for the heavy
quarks, we are able to extend our analysis almost to the
b-quark mass, using the same relativistic discretization
that we use for c and lighter quarks. A 1.5% extrapo-
lation of z(3, mh), from the largest mηh used in our fits
to mηb , gives us a new, accurate determination of the
b-quark mass,

mb(10 GeV, nf = 5) = 3.618(25) GeV. (48)

Can determine                  for 
heavy quarks - extrapolate 
(slightly) to b.

b

mq ≥ mc

c
mh/mηh

m
nf=4
c (3GeV) = 0.986(6)GeV

m
nf=5
b (10GeV) = 3.618(25)GeVAgree well with results using

             (C. Sturm talk)Re+e−
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Quark mass ratios from lattice QCD
10

the ηc and ηb and the equation:

mb(µ, nf )
mc(µ, nf )

=
mexp

ηb
w(mexp

ηb
, 0)

mexp
ηc w(mexp

ηc , 0)
. (41)

It might seem simpler to fit m0h directly, rather than
the ratio w; but using w significantly reduces the mηh

dependence (and therefore our extrapolation errors), and
also makes our results quite insensitive to uncertainties
in our values for the lattice spacing.

We parameterize function w with an expansion mod-
eled after the one we used to fit the moments:

w(mηh ,a) = Zm(a)

(
1 +

Nw∑

n=1

wn

(
2Λ
mηh

)n
)

/ (42)



1 +
Nam∑

i=1

Nw∑

j=0

cij

(amηh

2

)2i
(

2Λ
mηh

)j


 ,

where, as for the moments,

i + j ≤ max(Nam, Nw). (43)

Coefficients cij and wn are determined by fitting function
w(mηh , a) to the values of 2am0h/(amηh) from Table II.
The fit also determines the parameters Zm(a), one for
each lattice spacing, which account for the running of
the bare quark masses between different lattice spacings.

The finite-a dependence is smaller here than for the
moments, because the ηh is nonrelativistic [8], and the
variation with mηh stronger (twice that of z(µ/mh =
3, mηh)). So here we use priors

cij = 0± 0.05 (44)
wn = 0± 4

Zm(a) = 1± 0.5

with Nw =8. We again take Nam =30, although identical
results are obtained with Nam = 15.

Our fit results are illustrated by Figure 4 which plots
the ratio m0h/mηh divided by m0c/mηc for a range of
ηh masses. Our data for different lattice spacings is com-
pared with our fit, and with the a = 0 limit of our fit
(solid line). The fit is excellent, with χ2/22 = 0.42 for
the 22 pieces of data we fit (we again exclude cases with
amηh > 1.95). Using the ηc and ηb masses from Sec-
tion IVB, and Eq. (41) with the best-fit values for the
parameters, we obtain finally

m0b

m0c
→ 4.49(4) as a→0 (45)

=
mb(µ, nf )
mc(µ, nf )

,

which agrees well with our result from the moments
(Eq. (36)).
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FIG. 4: Ratio m0h/mηh divided by m0c/mηc (which we ap-
proximate by w(mηc , a)/2 from our fit) as a function of mηh .
The solid line shows the a=0 extrapolation obtained from our
fit. This is compared with simulation results for our 4 small-
est lattice spacings, together with the best fits (dashed lines)
corresponding to those lattice spacings. The point marked by
an “x” is for the largest mass we tried (last line in Table II);
this was not included in the fit because amηh is too large.

VI. αMS FROM WILSON LOOPS

In a recent paper [26], we presented a very accurate
determination of the QCD coupling from simulation re-
sults for Wilson loops. Here we want to compare those
results to the value we obtain from heavy-quark corre-
lators. First, however, we must update our earlier anal-
ysis to take account of the new value for r1 [10] given
in Eq. (10) and improved values for r1/a [13] given in Ta-
ble I. (The Wilson-loop paper uses some additional con-
figuration sets: from Table II in that paper, sets 1, 6, 9,
and 11 whose new r1/as are 1.813(8), 2.644(3), 5.281(8)
and 5.283(8), respectively.) We have rerun our earlier
analysis, updating r1, r1/a, and the c and b masses. The
results are shown in Figure 5. Combining results as in the
earlier paper we obtain a final value from the Wilson-loop
quantities of

αMS(MZ , nf = 5) = 0.1184(6), (46)

with χ2/22 = 0.3 for the 22 quantities in the figure.
This agrees very well with the result in the earlier pa-
per, αMS(MZ) = 0.1183(8), but has a slightly smaller
error, as expected given the smaller error in r1. This
new value also agrees well with our very different de-
termination from heavy-quark correlators (Eq. (38)). A
breakdown of the error into its different sources can be
found in Table IV of [26] (reduce the r1 and r1/a errors
in that table by half to account for the improved values
used here).
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FIG. 1: Grey points show the raw data for every ratio of
mc/ms on each ensemble (Table II); these ratios are fit to
eq. 4. The dashed line and associated grey error band (and red
point at a = 0) show our extrapolation of the resulting tuned
mc/ms to the continuum limit. Blue points with error bars
are from a simple interpolation, separately for each ensemble,
to the correct mc/ms, and are shown for illustration.

semble by ensemble basis this is taken from a parameter
in the heavy quark potential called r1. Values for r1/a
determined by the MILC collaboration [14] are given in
Table I. They have errors of 0.3-0.5%. The physical value
for r1 must then be obtained by comparing to experimen-
tally known quantities and we use the value 0.3133(23)
fm obtained from a set of four such quantities, tested for
consistency in the continuum limit [18, 19].

Using the information about meson masses that we
have on each ensemble we can interpolate to the cor-
rect ratio for am0c and am0s using appropriate contin-
uum values for the masses of the ηc and ηs. We cor-
rect the experimental value of mηc of 2.9803 GeV to
mηc,phys = 2.9852(34) GeV. This allows for electromag-
netic effects (2.4 MeV) [18] and ηc annihilation to gluons
(2.5MeV) [11], both of which are missing from our calcu-
lation, so increasing the ηc mass. We take a 50% error on
each of these corrections and also increase the experimen-
tal error to 3 MeV to allow for the spread of results from
different ηc production mechanisms [1]. Since the total
shift is only around 0.2% of the ηc mass it has a negligible
effect as can be seen from our error budget below.

The ηs is not a physical particle in the real world be-
cause of mixing with other flavor neutral combinations to
make the η and η′. However, in lattice QCD, the particle
calculated (as here) from only ‘connected’ quark propag-
tors does not mix and is a well-defined meson. Its mass
must be determined by relating its properties to those
of mesons such as the π and K that do appear in ex-
periment. From an analysis of the lattice spacing and
ml-dependence of the π, K, and ηs masses we conclude
that the value of the ηs mass in the continuum and phys-
ical ml limits is 0.6858(40) GeV [18].

The connection between the MS mass at a scale µ and

the lattice bare quark mass is given by [10, 20]:

m(µ) =
am0

a
Zm(µa, m0a), (2)

Zm = 1 + αs(−
2
π

log(µa) + C + b(am0)2 + . . .) + . . . .

From these two equations it is clear that

mc(µ)
ms(µ)

=
am0c

am0s

∣∣∣∣
phys

, (3)

where phys denotes extrapolation to the continuum limit
and physical sea quark mass limit.

On each ensemble the ratios we have for am0c/am0s

then differ from the physical value because of three ef-
fects: mistuning from the correct physical meson mass;
finite a effects that need to be extrapolated away and ef-
fects because the sea light quark masses are not correct.
We incorporate these into our fitting function:

m0c

m0s

∣∣∣∣
lat

=
m0c

m0s

∣∣∣∣
phys

×
(

1 + dsea
δmsea

tot

ms

)
(4)

×



1 +
∑

i,j,k,l

cijkl δ
i
c δj

s

(amηc

2

)2k
(amηs)

2l



 .

δc =
mηc,MC −mηc,phys

mηc,phys
; δs =

m2
ηs,MC −m2

ηs,phys

m2
ηs,phys

(5)

are the measures of mistuning, where MC denotes lattice
values converted to physical units. The last bracket fits
the finite lattice spacing effects as a power series in even
powers of a. These can either have a scale set by mc

(for which we use amηc/2) or by ΛQCD (for which we use
amηs). i, j, k, l all start from zero and are varied in the
ranges: i, j ≤ 3, k ≤ 6, l ≤ 2 with i + j + k + l ≤ 6.
Doubling any of the upper limits has negligible effect on
the final result. The prior on cijkl is set to 0(1). δmsea

tot

is the total difference between the sea-quark masses used
in the simulation and the correct value for 2ml +ms [18].
This has a tiny effect and we simply use a linear term
(adding higher orders has negligible effect). The prior for
dsea is 0.0(1). Figure 1 shows the results of the fit, giving
mc/ms in the continuum limit as 11.85(16) (χ2/dof =
0.42). The error budget is given in Table III.

ms/ml is known to 1% from lattice QCD as a byprod-
uct of standard chiral extrapolations of m2

π and m2
K to

the physical point [21]. MILC quote 27.2(3) using asq-
tad quarks [14]. Our HISQ analysis in [12] gave a re-
sult in agreement at 27.8(3), using a Bayesian fit to a
function including terms from chiral perturbation theory
up to third order in ml and allowing for discretisation
errors up to and including a4 and for mixed terms (i.e
ml-dependent discretisation errors). A full error budget
is given in Table III; the data are given in [18].

(
mq1,latt

mq2,latt

)

a=0

=
mq1,MS(µ)
mq2,MS(µ)

completely nonpert. 
mb

mc
= 4.49(4)

strong test of c.c. method. 

Determine mc/ms using
HISQ for both - allows 
connection from heavy 
to light for first time

mc

ms
= 11.85(16)
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Summary - quark masses 
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Figure 1: Test of the relationships 7, 8, and 9, between masses and CKM matrix elements
predicted by Chkareuli and Froggatt [34]. The circles are the results for the CKM matrix
elements. The squares and diamonds are the predictions for the CKM matrix elements in
terms of quarks masses from the HPQCD/MILC collaborations and the PDG respectively.
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 HPQCD, 1004.4285

C. McNeile, 
1004.4985

Using heavy quark leverage, 
        error down to 1.5% 
(PDG has 30%!)
ms

Accurate ratios rule out some 
quark mass matrix models 
based on textures. 

ms(2GeV) = 92.2(1.3)MeV

md(2GeV) = 4.77(15)MeV

mu(2GeV) = 2.01(10)MeV
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Determination of         in             schemeαs

1) current-current correlator method
Comparing          to contnm pert. theory allows 
to be determined along with masses.  

Rn αMS(µ)

An NNNLO determn, but higher orders also inc. in fit.
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FIG. 2: QCD coupling αMS(µ, nf = 3) as a function of mηh

where µ=3mh. The solid line, plus gray error envelope, shows
the best-fit coupling from our fit when perturbative evolution
is assumed. The data points are values of αMS extracted
from individual simulation results for Rn after extrapolating
to a = 0 and removing factor z(3, mηh) (n > 4). Results are
given for moments n=4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

Note that the ratio mb(µ, nf )/mc(µ, nf ) is indepen-
dent of µ and nf . We obtain the following result for this
mass ratio:

mb/mc = 4.53(4) (36)

The other important output from our fit is a value for
parameter

α0 ≡ αMS(5 GeV, nf = 3) = 0.2034(20). (37)

To compare with other determinations of the coupling,
we add vacuum polarization corrections from the c and
b quarks, using the masses above, and evolve to the Z-
meson mass [18–21]:

αMS(MZ , nf = 5) = 0.1183(7). (38)

TABLE IV: Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncer-
tainty is given as a percentage of the final value.

αMS(MZ) mb(10) mb/mc mc(3)
a2 extrapolation 0.2% 0.6% 0.5% 0.2%

perturbation theory 0.5 0.1 0.5 0.4
statistical errors 0.1 0.3 0.3 0.2
mh extrapolation 0.1 0.1 0.2 0.0

errors in r1 0.2 0.1 0.1 0.1
errors in r1/a 0.1 0.3 0.2 0.1

errors in mηc ,mηb 0.2 0.1 0.2 0.0
α0 prior 0.1 0.1 0.1 0.1

gluon condensate 0.0 0.0 0.0 0.2
Total 0.6% 0.7% 0.8% 0.6%

Figure 2 shows how consistent our simulation results are
with the theoretical curve for αMS(µ, nf =3) correspond-
ing to our value for α0. For this figure we extracted
values for αMS from each Rn separately by dividing out
a2 dependence and z(3, mηh) using our best-fit parame-
ters, and then solving for αMS by matching with pertur-
bation theory for rn. (In our fit, of course, we fit all Rns
simultaneously to obtain a single αMS for all of them.)

The dominant sources of error for our results are listed
in Table IV. The largest uncertainties come from: ex-
trapolations to a = 0, especially for quantities involving
b quarks; unknown higher-order terms in perturbation
theory, especially for quantities involving c quarks; sta-
tistical fluctuations; extrapolations in the heavy quark
mass, especially for quantities involving b quarks; and
uncertainties in static-quark parameters r1/a and r1.The
pattern of errors is as expected in each case. The non-
perturbative contribution from the gluon condensate is
negligible except for mc, again as expected; and errors
due to mistuned sea-quark masses, finite volume errors,
and uncertainties in MS coupling and mass evolution are
negligible (<0.05%).

The a2 extrapolations of our data are not large. This
is illustrated for mh ≈ mc in Figure 3, which shows the
a2 dependence of the reduced moments. The smallest
two lattice spacings are sufficiently close to a=0 that the
extrapolation is almost linear from those points. The a=
0 extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n = 4, 6, 8, 10, respectively, for the masses used in the
figure.

We tested the stability of our analysis in several ways:

• Vary perturbation theory: We chose µ = 3mh in
order to keep scales large and αMS(µ) small. Our
results are quite insensitive to µ, however. Choos-
ing µ=mh, for example, shifts none of our results
by more than 0.2σ, and leaves all errors unchanged
except for mc(3), where the error increases by a
third. Taking µ = 9mh shifts results by less than
0.4σ, and reduces the mc error by a third, leaving

MS

α
nf =3

MS
(5GeV)

= 0.2034(20)

α
nf =5

MS
(mZ)

= 0.1183(7) mηh(GeV)
mηc mηb

4 6 8
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FIG. 5: Updated values for the 5-flavor αMS at the Z-meson
mass from each of 22 different short-distance quantities built
from Wilson loops. The gray band indicates a composite av-
erage, 0.1184(6). χ2 per data point is 0.3.

VII. CONCLUSIONS

In this paper, we improve significantly on our previous
determinations of the QCD coupling and c-quark mass
from heavy-quark correlators. This is principally due to
the inclusion of a new, smaller lattice spacing in our anal-
ysis. We also generated results for a variety of quark
masses near mc, allowing us to interpolate more accu-
rately to the physical value of mc. New third-order per-
turbation theory makes R10 as useful now as R4, R6, and
R8 were in the earlier paper. Finally, in this paper, we
fit multiple moments simultaneously, determining con-
sistent values simultaneously for both the QCD coupling
and the quark masses for all moments. Previously we ex-
amined each moment or ratio of moments independently,
extracting mcs or αMSs independently of each other. Our
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FIG. 6: z(µ/mh, mηh) versus mηh for three different values
of µ/mh. The curve for µ = 3mh comes from the best fit
to the moments. The other curves are obtained by evolving
perturbatively from µ=3mh.
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FIG. 7: Simulation results for reduced moments Rn with n=
6, 8, 10 as functions of mηh for 5 different lattice spacings.
The dashed lines show the corresponding behavior of our fit
function, with the best-fit parameters. The curves for smaller
lattice spacings extend further to the right. The solid lines
show the a=0 limit of our best fit.

new results,

mc(3 GeV, nf = 4) = 0.986(6) GeV (47)
αMS(MZ , nf = 5) = 0.1183(7),

agree well with our older results of 0.986(10) GeV and
0.1174(12), respectively [1].

The much heavier b quark is usually analyzed using ef-
fective field theories like NRQCD or the static-quark ap-
proximation. By using very small lattice spacings and the
very highly improved HISQ discretization for the heavy
quarks, we are able to extend our analysis almost to the
b-quark mass, using the same relativistic discretization
that we use for c and lighter quarks. A 1.5% extrapo-
lation of z(3, mh), from the largest mηh used in our fits
to mηb , gives us a new, accurate determination of the
b-quark mass,

mb(10 GeV, nf = 5) = 3.618(25) GeV. (48)
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Summary - αs

Key points:
• high statistical 
precision
• high order pert. th. 
exists and can 
estimate higher orders
• higher twist not a 
significant issue
• two approaches very 
different - good test
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Conclusions
• Lattice QCD is unbeatable at accurate determination 
of QCD parameters. This is not surprising. 
• Keys were a highly improved quark formalism (HISQ) 
on very fine lattices + high order pert. th. Would be good 
to get results from other quark formalisms, but ...

Further calculations in future
•          from light meson correlators at large space-like
JLQCD with 1 lattice spacing get  

αs

α
nf =5

MS
= 0.1183(13)

JLQCD, 1002.0371

• Generating ensembles with                     
now possible with improved staggered formalism. Would 
allow relativistic b quarks with no extrapolation.

a = 0.03fm
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FIG. 2: QCD coupling αMS(µ, nf = 3) as a function of mηh

where µ=3mh. The solid line, plus gray error envelope, shows
the best-fit coupling from our fit when perturbative evolution
is assumed. The data points are values of αMS extracted
from individual simulation results for Rn after extrapolating
to a = 0 and removing factor z(3, mηh) (n > 4). Results are
given for moments n=4–10 and all 5 lattice spacings. Several
points from different lattice spacings overlap in these plots.

Note that the ratio mb(µ, nf )/mc(µ, nf ) is indepen-
dent of µ and nf . We obtain the following result for this
mass ratio:

mb/mc = 4.53(4) (36)

The other important output from our fit is a value for
parameter

α0 ≡ αMS(5 GeV, nf = 3) = 0.2034(20). (37)

To compare with other determinations of the coupling,
we add vacuum polarization corrections from the c and
b quarks, using the masses above, and evolve to the Z-
meson mass [18–21]:

αMS(MZ , nf = 5) = 0.1183(7). (38)

TABLE IV: Sources of uncertainty for the QCD coupling and
mass determinations in this paper. In each case the uncer-
tainty is given as a percentage of the final value.

αMS(MZ) mb(10) mb/mc mc(3)
a2 extrapolation 0.2% 0.6% 0.5% 0.2%

perturbation theory 0.5 0.1 0.5 0.4
statistical errors 0.1 0.3 0.3 0.2
mh extrapolation 0.1 0.1 0.2 0.0

errors in r1 0.2 0.1 0.1 0.1
errors in r1/a 0.1 0.3 0.2 0.1

errors in mηc ,mηb 0.2 0.1 0.2 0.0
α0 prior 0.1 0.1 0.1 0.1

gluon condensate 0.0 0.0 0.0 0.2
Total 0.6% 0.7% 0.8% 0.6%

Figure 2 shows how consistent our simulation results are
with the theoretical curve for αMS(µ, nf =3) correspond-
ing to our value for α0. For this figure we extracted
values for αMS from each Rn separately by dividing out
a2 dependence and z(3, mηh) using our best-fit parame-
ters, and then solving for αMS by matching with pertur-
bation theory for rn. (In our fit, of course, we fit all Rns
simultaneously to obtain a single αMS for all of them.)

The dominant sources of error for our results are listed
in Table IV. The largest uncertainties come from: ex-
trapolations to a = 0, especially for quantities involving
b quarks; unknown higher-order terms in perturbation
theory, especially for quantities involving c quarks; sta-
tistical fluctuations; extrapolations in the heavy quark
mass, especially for quantities involving b quarks; and
uncertainties in static-quark parameters r1/a and r1.The
pattern of errors is as expected in each case. The non-
perturbative contribution from the gluon condensate is
negligible except for mc, again as expected; and errors
due to mistuned sea-quark masses, finite volume errors,
and uncertainties in MS coupling and mass evolution are
negligible (<0.05%).

The a2 extrapolations of our data are not large. This
is illustrated for mh ≈ mc in Figure 3, which shows the
a2 dependence of the reduced moments. The smallest
two lattice spacings are sufficiently close to a=0 that the
extrapolation is almost linear from those points. The a=
0 extrapolated values we obtain here for the Rn agree to
within (smaller) errors with those in our previous paper:
here we get 1.282(4), 1.527(4), 1.373(3), 1.304(2) with
n = 4, 6, 8, 10, respectively, for the masses used in the
figure.

We tested the stability of our analysis in several ways:

• Vary perturbation theory: We chose µ = 3mh in
order to keep scales large and αMS(µ) small. Our
results are quite insensitive to µ, however. Choos-
ing µ=mh, for example, shifts none of our results
by more than 0.2σ, and leaves all errors unchanged
except for mc(3), where the error increases by a
third. Taking µ = 9mh shifts results by less than
0.4σ, and reduces the mc error by a third, leaving

current-current correlator method
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log W11 log W12 log W22 log W11W22/W 2
12 log W12/u6

0 log W22/u8
0 αlat/W11

c1...c3 0.1% 0.1% 0.1% 0.3% 0.1% 0.1% 0.1%
cn for n ≥ 4 0.2 0.3 0.3 0.4 0.3 0.4 0.3

amq, r1mq extrapolation 0.1 0.1 0.0 0.1 0.1 0.1 0.0
(a/r1)

2 extrapolation 0.2 0.3 0.4 0.3 0.2 0.2 0.0
(r1/a)i errors 0.4 0.4 0.4 0.3 0.3 0.3 0.3

r1 errors 0.3 0.3 0.3 0.3 0.3 0.3 0.3
gluon condensate 0.1 0.1 0.1 0.2 0.1 0.1 0.1
statistical errors 0.0 0.0 0.0 0.1 0.0 0.0 0.0
V → MS→MZ 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Total 0.6% 0.6% 0.7% 0.7% 0.6% 0.6% 0.5%

TABLE IV: Sources of uncertainties in determinations of αMS(MZ , nf =5) from various short-distance quantities. Uncertainties
are given as percentages of the final result in each case.
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FIG. 2: Values for αV versus d/a from each short-distance
quantity at each lattice spacing, with and without corrections
for gluon condensates. The gray band shows the prediction
from QCD evolution (Eq. (5)) assuming our composite fit
value (Eq. (28)).

nent pieces. The error estimate produced by our fitting
code for a quantity like αMS is approximately linear in
all the variances σ2 that appear in the χ2 function:

σ2
αMS

≈
12∑

i=1

cYi σ2
Yi

+
10∑

n=1

ccn σ2
cn

+ c
y(1)

m
σ2

y(1)
m

+ c
r(1)
1m

σ2
r(1)
1m

+ c
r(2)
1a

σ2
r(2)
1a

+ · · · (29)

This works when errors are small, as they are here. To
isolate the part of the total error that is associated with
the statistical uncertainties in the Yi, for example, the fit
is rerun but with the corresponding variances rescaled by
a factor f close to one (f = 1.01, for example):

σ2
Yi
→ fσ2

Yi
(30)

for i = 1 . . . 12. Then

σ2
αMS

(f)− σ2
αMS

(f =1)
f − 1

≈
12∑

i=1

cYi σ2
Yi

(31)

The square root of this quantity is the part of the total
error due to the statistical uncertainties in the Yi. This
procedure can be repeated for each prior or group of pri-
ors that contributes to the χ2 function. The sum of the
variances obtained in this way for each part of the total
error should equal σ2

αMS
; if it does not, errors may not

be sufficiently small to justify the linear approximation
in Eq. (29) [22].

In Table IV we present error budgets computed in this
fashion for a sample of our determinations of αMS(MZ).
This table shows that our largest errors come from un-
certainties in the perturbative coefficients with n ≥ 4,
statistical errors in the simulation values for (r1/a)i, sys-
tematic uncertainties in the physical value for r1, and
finite-a lattice errors in r1. Uncertainties in the param-
eters used to convert α0 = αV (7.5 GeV, nf = 3) into
αMS(MZ , nf = 5) have negligible impact. Also negligi-
ble are uncertainties due to the gluon condensate, and
statistical errors in the Wilson loops.

Our errors are greatly reduced because we can bound
the size of perturbative coefficients cn for n = 4 and
beyond. This is possible because we are fitting simula-
tion data from six different lattice spacings simultane-
ously. As noted in [1], the n = 4 coefficients are large,
particularly for log(W )s where typically our fits imply
c4/c1 ≈ −4(2). As expected, perturbative higher-order
coefficients are smaller for other quantities: for exam-
ple, we find typically c4/c1 ≈ −2(2) for tadpole-improved
loops. The fit results for c4/c1 and c5/c1 for each of our
short-distance quantities are given in Table I.

wilson loops method

now halved by improved scale determn
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