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1. Introduction

Quarkonium in QGP

Heavy quarkonium is an important probe of the properties of a
quark-gluon plasma. [T. Matsui, H. Satz (1986)]

In heavy ion collisions → short lived quark-gluon plasma.
In the primary collisions heavy quarkonium is created.
Depending if it survives the high T it eventually decays (to
muons for instance).

⇐ Description of bound state at T > 0.
Muon escape ↔ carry information out of the plasma.

⇐ Spectral function.
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The description of quarkonium bound states at T > 0

Many different theoretical approaches:
1 Potential models

Heavy quark → non-relativistic
→ interaction described by a potential.
Successful at T = 0, but how to define a potential at T > 0?

2 Perturbation theory

Heavy quark effective theory
→ define the potential as matching coefficient.
Convergence of perturbation theory questionable.

3 Lattice QCD

Contains perturbative and non-perturbative physics.
Need to analytically continue results from Euclidean to real
time.

4 AdS/QCD

4



Introduction Polyakov loop correlators Conclusion

Perturbative potential for heavy quarks

In the heavy quark limit, the potential is given by a Wilson loop of
Euclidean time extend τ → it:

CE (τ, r) = 〈Tr [WE (τ, r)]〉

Vpert(t, r) =
i∂tCE (it, r)

CE (it, r)

r0

β

τ

Static potential

lim
t→∞

Vpert(t, r) = −αCF

[

mD +
exp(−mDr)

r
+ iT φ(mDr)

]

+O(g4)

2×thermal mass correction for heavy quarks.
Second term → standard Debye-screened potential.
Third imaginary term → heavy quark damping.

[Laine, Philipsen, Romatschke, Tassler (2007); Brambilla, Ghiglieri, Vairo and

Petreczky (2008); Beraudo, Blaizot, Ratti (2008)]
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Quarkonium on the lattice

Standard: Compute directly the spectral function
⇒ Needs to analytically continue the Euclidean correlator
(MEM).

Potential from its perturbative definition also needs an
analytical continuation.

From the position of the first peak of the spectral function →
real part of the potential.

Find some Euclidean observable that matches the potential
→ Classical observable: ”singlet quark-antiquark free energy”.
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2. Polyakov loop correlators

The singlet free energy is defined form the Coulomb gauge
Polyakov loop correlator

ΨC =
1

Nc
〈Tr [P0P

†
r ]〉Coulomb

r0

β

τ

as

FC = −T log

(

ΨC

Ψ2
P

)

with the normalization ΨP = 1
Nc

〈Tr [P0]〉.

Interesting properties (lattice):

Displays good scaling properties (lattice size and spacing).

Matches the T = 0 potential in the limit r → 0.

Relation between FC and Vpert?
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Singlet free energy as real part of the potential?

Potential out of the lattice spectral function

The position of the first peak → real part of the potential.

Width of the first peak → imaginary part.

[Rothkopf, Hatsuda, Sasaki, 2009]

The real part of the potential matches the free energy.
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Can we learn something from perturbation theory?

We consider a more general set of correlators:

1 Singlet free energy in Coulomb gauge:

ΨC =
1

Nc

〈Tr[PrP
†
0]〉Coulomb

⇐ Standard quantity measured on the lattice.
r0

β

τ

2 The singlet free energy in covariant gauge Ψξ.

3 Cyclic Wilson loop:

ΨW =
1

Nc
〈Tr[PrWβP

†
0W

†
0 ]〉

⇐ Gauge invariant.
r0

β

τ
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Leading order perturbation theory

The free energy is gauge invariant,

FC = Fξ = −αCF

e−mD r

r
.

It equates the Wilson loop

ΨC = ΨW .

It is equal to the real part of the potential up to some
constant.

Do all these nice properties extend to NLO?
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Perturbation theory calculation at NLO

We calculated these different observables using finite T

perturbation theory at NLO: [YB, M. Laine and M. Vepsäläinen, 2009]

Difficulties:

UV divergences:
1
Nc
〈Tr[PrP

†
0 ]〉 depends only on g .

⇒ Charge renormalization alone should cancel UV divergences.

IR divergences:

Color electric modes at the scale gT .
⇒ Needs resummation: systematically done from EQCD.

Ψ = [ΨQCD − ΨEQCD ]unresummed + [ΨEQCD ]resummed

Color magnetic modes at the scale g 2T .
⇒ No prominent role here.
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Calculation: One Polyakov loop as example

[ΨP ]QCD =

[

1

Nc

〈Tr [Pr ]〉

]

QCD

=

+ O(g6)

= 1−
g2CF

2T

∫

k

1

k2
−

g4CF

2

∫

k

2

k4

∫

q

· · · + . . .

The IR divergent 1/k4 and further logarithmic divergences in the
. . . are treated with EQCD.
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EQCD resummation

The Lagrangian of EQCD reads

LE =
1

2
Tr [F̃ 2

ij ] + Tr [D̃i , Ã0]
2 + m2

DTr [Ã2
0] + . . . .

The Polyakov loop operator is represented as

Pr = [1Z0] + igÃ0β Z1 +
1

2
(igÃ0β)2 Z2 + . . .+ (g2F̃ijβ

2)2X4 + . . .

g3, g4 corrections to the Polyakov loop in EQCD:

[ΨP ]EQCD = −
g2CF

2T

∫

k

1

k2 + m2
D

−
g4CF

2

∫

k

2

(k2 + m2
D)2

∫

q

. . .

The divergences are regularized and reappear in the mD → 0 limit.
The expression ΨP = [[ΨP ]QCD − [ΨP ]EQCD ]mD→0 + [[Ψp]EQCD ] is
finite and contains the correct color electric physics.
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NLO results

All quantities ΨC , Ψξ, ΨW have “problems”:

Polyakov loop correlator is not gauge invariant at O(g4).

ΨC is finite after charge renormalization but not Ψξ nor ΨW .

ΨC , Ψξ have a power law tail ∝ α2

T 2r2 .

→ Gauge artefact since there is a finite screening length in QGP.

The gauge invariant ΨW decreases like e−mDr .

Perturbation theory breaks down at large r :
[ΨC ]NLO

EQCD > [ΨC ]LO
EQCD at r ≫ π

g2T
.

However: For rT ≪ 1, ΨC reproduces the T = 0 potential

V (r) = −
g2CF

4πr
+

g4CF

(4π)2

∫

k

e ik·r

k2

[

2Nf

3

(

ln
µ̄2

k2
+

5

3

)

−
11Nc

3

(

ln
µ̄2

k2
+

31

33

)]

.
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NLO results for the free energy in the Coulomb gauge

FC (r) = −
α(µ̄)CF exp(−mDr)

r

{

1 + α(µ̄)

[

11Nc

3

(

2 ln
µ̄eγE

4πT
+ 1

)

−
2Nf

3

(

2 ln
µ̄eγE

πT
− 1

)]}

− α(µ̄)2CFNc

{

−
exp(−2mDr)

8Tr2

1

12Tr2
+

Li2(e
−4πTr )

(2πr)2T
+ T exp(−mDr)

[

2 − ln(2mDr) − γE

+e2mDrE1(2mDr)

]

+
1

πr

∫ ∞

1
dx

(

1

x2
−

1

2x4

)

ln
(

1 − e−4πTrx
)

}

−α(µ̄)2CF Nf

[

1

2πr

∫ ∞

1
dx

(

1

x2
−

1

x4

)

ln
1 + e−2πTrx

1 − e−2πTrx

]

+ O(g5) .
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Comparison with lattice
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Perturbative calculation shows a good convergence and fits lattice
data very well. [Lattice data from Kaczmarek, Karsch, Petreczky, Zantow, 2002]
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4. Conclusion and Outlook

The singlet free energy in Coulomb gauge reproduce the
correct Tr → 0 behavior.

This observable might be quite close to the real part of the
potential.

However shows a non physical 1/r2 behavior at large distance
both in perturbation theory and in the lattice data.

⇒ Using the free energy probably overestimates the binding
energy.

Perturbation theory seems to converge well.

⇒ Computations for the quarkonium decay from perturbative
potential should be reliable. [YB, Laine, Vepsäläinen, 2007, 2008]

Motivation to calculate the perturbative potential to O(g4).
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