# PANDA Overview

Miriam Fritsch

May 21, 2010 QWG 2010 - Fermilab

Institut für Kernphysik Universität Mainz





### GSI Helmholtz Center and FAIR

Hadron Structure and Dynamics Nuclear and Quark Matter Physics and Chemistry of SHE Nuclear Structure and Astrophysics Atomic, Plasma and Materials Physics Radiobiology Accelerators and Detectors

Miriam Fritsch

FAIR

### Antiproton Facility PANDA @ FAIR





#### Charmonium Spectroscopy

Precision Spectroscopy Study of Confinement Potential Access to all these puzzling X,Y,and Z



#### Charmonium Spectroscopy



#### Search for Exotics

Look for Glueballs and Hybrids Gluon rich environment  $\rightarrow$  high discovery potential Disentangle Mixing via PWA



#### Charmonium Spectroscopy



#### Search for Exotics



#### Charm in Medium Study in-medium modification of Hadrons





#### Nucleon Structure

Generalized Parton Distribution Timelike Form Factor of the Proton **Drell-Yan Process** 





### HESR - High Energy Storage Ring



| Mode               | High Resolution                                     | High Luminosity                                     |  |  |
|--------------------|-----------------------------------------------------|-----------------------------------------------------|--|--|
| Momentum range     | 1.5 - 8.9 GeV/c                                     | 1.5 - 15 GeV/c                                      |  |  |
| Stored antiprotons | 10 <sup>10</sup>                                    | 10 <sup>11</sup>                                    |  |  |
| Luminosity         | 2·10 <sup>31</sup> cm <sup>-2</sup> s <sup>-1</sup> | 2·10 <sup>32</sup> cm <sup>-2</sup> s <sup>-1</sup> |  |  |
| Mom. Resol. (rms)  | Δp/p ≤ 4·10 <sup>-5</sup>                           | Δp/p = 1·10 <sup>-4</sup>                           |  |  |
| Beam cooling       | Electron ( ≤ 8.9 GeV/c)                             | Stochastic ( ≥ 3.8 GeV/c)                           |  |  |

### Detector requirements

Nearly  $4\pi$  solid angle for PWA High rate capability: 2.107 s<sup>-1</sup> interactions Efficient event selection Good momentum resolution Vertex info for D,  $K_0 \Sigma$ ,  $\Lambda$  ( $c\tau = 317 \mu m$  for  $D^{\pm}$ ) Good PID ( $\gamma$ , e,  $\mu$ ,  $\pi$ , K, p) Photon detection 1 MeV - 10 GeV Forward Capabilities



Miriam Fritsch











FAIR/PANDA/Technical Design Report - EMC

#### arXiv:0810.1216v1

Technical Design Report for:

**PANDA** Electromagnetic Calorimeter (EMC)

(AntiProton Annihilations at Darmstadt)

Strong Interaction Studies with Antiprotons

**PANDA** Collaboration

arXiv:0907.0169 Technical Design Report for the PANDA (Antiproton Amhiliations at Darmstack) Strong Interaction Studies with Antiprotons

p a n d a

The PANDA Collaboration

February 2009

onitor

### Resolution for various $\Delta p/p$ @ various $p_{\bar{p}}$

#### Lowest $\Delta p/p$ required for charm-state scans Relaxed for detector resolution dominated cases



### Luminosity 2.10<sup>32</sup> cm<sup>-2</sup> s<sup>-1</sup> (High Luminosity Mode)

- $\rightarrow$  8 pb<sup>-1</sup>/day or 1.5 fb<sup>-1</sup>/year
- $ightarrow 10^4$   $10^7$  cc states/day.

Improvements with respect to Fermilab E760/E835

- 10x higher instantaneous luminosity
- $\Delta p/p = 10^{-5}$  (2.10<sup>-4</sup> FNAL)
- Better detector (higher angular coverage, magnetic field, ability to detect hadronic decay modes).

Fine scans to measure masses to  $\approx$  100 keV, widths to  $\approx$  10 %.

### Explore entire region below and above open charm threshold

### Charmonium Spectrum



### pp cross sections – exclusive final states



#### Hybrid candidates

 $\pi_1(1400)$  and  $\pi_1(1600)$  with J<sup>PC</sup>=1<sup>-+</sup>

Important:

states with exotic quantum numbers

Glueball candidate  $f_0(1500)$  with  $J^{PC}=0^{++}$ 

Overlap with conventional states  $\rightarrow$  Charm sector

### pp cross sections – exclusive final states



## Y(4260) - $c\bar{c}$ hybrid with $J^{PC} = 1^{--}$

### Formation reaction



Simulation at  $\sqrt{s}$  = 4260 MeV/c<sup>2</sup>



J/ψπ<sup>+</sup>π<sup>-</sup> Efficiency: 33% S/B: 2

J/ψπ<sup>0</sup>π<sup>0</sup> Efficiency: 17% S/B: 25

RMS: 13.4 MeV/c<sup>2</sup>

## Y(4260) - $c\bar{c}$ hybrid with $J^{PC} = 1^{--}$

### Formation reaction



Simulation at  $\sqrt{s}$  = 4260 MeV/c<sup>2</sup>



#### Line shape measurement



## cc̄ hybrid J<sup>PC</sup> = 1<sup>-+</sup> ( $\widetilde{\eta}_{c1}$ ) in $\chi_{c1}\pi^0\pi^0$



Beam momentum: 15 GeV/c

Mass =  $4.29 \text{ GeV/c}^2$ Width =  $20 \text{ MeV/c}^2$ 

Final state:

7 photons and  $e^+e^-$  from  $J/\psi$ 

$$\mathcal{R} = \frac{\sigma_S \mathcal{B}(\tilde{\eta}_{c1} \to \chi_{c1} \pi^0 \pi^0)}{\sigma_B}$$

| Reaction                        | $\eta$   | S/B                   |
|---------------------------------|----------|-----------------------|
| $\overline{p}p \rightarrow$     | $[10^3]$ | $[10^3]$              |
| $\chi_{c0}\pi^0\pi^0\eta$       | 5.33     | $10.1\mathcal{R}$     |
| $\chi_{c1}\pi^0\eta\eta$        | 26.6     | $4.57\mathcal{R}$     |
| $\chi_{c1}\pi^0\pi^0\pi^0\eta$  | > 80     | $> 5.53  \mathcal{R}$ |
| $J\!/\!\psi\pi^0\pi^0\pi^0\eta$ | 9.98     | $0.25\mathcal{R}$     |

 $S/B\approx 250\text{--}10^4\,\cdot\,R$ 

## $c\bar{c}$ hybrid $J^{PC}$ = 1^{-+} $(\widetilde{\eta}_{c1})$ in $D^0\overline{D}^{*0}$



## Open Charm

Charm spectroscopy

Charmonium states above DD threshold

Search for hybrids decaying to  $\overline{D}D$ 

Rare D decays (and CP violation)

- → Separation from large hadronic background
- $\rightarrow$  Total  $\overline{D}D$  cross section unknown



#### D<sub>sJ</sub> discovered at B-factories

 $D_{s1}(2317)^+$ 

#### Production reaction



Mass resolution at B-Factories limited to 2.3 MeV/c<sup>2</sup> ! Prediction  $\Gamma < 1$  MeV/c<sup>2</sup>

Inclusive Reconstruction !

#### Threshold scan

 $M = 2317.30 \text{ MeV/c}^2$  $\Gamma = 1 \text{ MeV/c}^2$ 



 $\sigma_{\Gamma} = 0.3 \text{ MeV/c}^2$   $\sigma_{m} = 0.5 \text{ MeV/c}^2$ S/B = 1/3 14 days

### Luminosities @ various $p_{\bar{p}}$

#### Highest luminosity required for exotic charm discoveries and nucleon structure physics



### Development of Project Staging at FAIR

| 2003 | Recommendation by WissenschaftsRat<br>FAIR Realisation in three stages |                                                 |                                                                |                                                                                    |                                                                                               |                                                                                                                       |                    |  |  |
|------|------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------|--|--|
| 2005 | Entire Facility<br>Baseline Technical Report                           |                                                 |                                                                |                                                                                    |                                                                                               |                                                                                                                       |                    |  |  |
| 2007 | Phase A                                                                |                                                 |                                                                |                                                                                    |                                                                                               |                                                                                                                       |                    |  |  |
| 2009 | Module 0<br>SIS100                                                     | Module 1<br>expt areas<br>CBM/HADES<br>and APPA | <b>Module 2</b><br>Super-FRS<br>fixed target<br>area<br>NuSTAR | <b>Module 3</b><br>p̄-facility,<br>incl. CR for<br>PANDA,<br>options for<br>NuSTAR | <b>Module 4</b><br>LEB for<br>NuSTAR,<br>NESR for<br>NuSTAR and<br>APPA,<br>FLAIR for<br>APPA | <b>Module 5</b><br>RESR<br>nominal<br>intensity for<br>PANDA &<br>parallel<br>operation<br>with<br>NuSTAR and<br>APPA | Module 6<br>SIS300 |  |  |

#### Modularized Start Version

### Modularized Start Version



### Effect of Staging on PANDA



### PANDA will be a versatile QCD experiment

Large acceptance and double spectrometer Tracking and vertexing capabilities Particle identification and calorimetry Flexible data acquisition & trigger

Novel techniques in detector and readout design

First components are being produced

Technical design finished 2010

PANDA Physics Performance Report completed

Modularized Start Version does not affect too much

### **PANDA** Collaboration

> 430 Scientists56 Institutions16 Countries

U Basel IHEP Beijing U Bochum U Bonn U & INFN Brescia IFIN Budapest U & INFN Catania U Cracow GSI Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) U Edinburgh U Erlangen



NWU Evanston U & INFN Ferrara U Frankfurt LNF-INFN Frascati U & INFN Genoa U Glasgow U Gießen **KVI** Groningen IKP Jülich I + II U Katowice IMP Lanzhou U Mainz U & INFN Milano Politecnico di Milano U Minsk TU München U Münster **BINP Novosibirsk** LAL Orsay U & INFN Pavia **IHEP** Protvino **PNPI** Gatchina U of Silesia, Katowice U Stockholm KTH Stockholm U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala U Valencia SMI Vienna SINS Warsaw U Warsaw