Double charmonium production in exclusive bottomonia decays

V.V. Braguta Institute for High Energy Physics Protvino, Russia

- Introduction
- Leading twist bottomonia decays
- **n**_b \rightarrow J/ Ψ J/ Ψ decay

Introduction

Hard exclusive processes

Exclusive processes:

- 1. Decays: $Y \to \rho \pi, \eta_c \to \rho \rho,...$
- 2. Annihilation : $e^+e^- \rightarrow J / \Psi J / \Psi$,...

3. Different formfactors : $F_{\pi}(Q^2)$,...

Light cone expansion formalism

Factorization

Different Contributions:

1. Short distance contribution : C_n (perturbative QCD)

2. Large distance contribution : $< M | O_n | 0 >$ (nonperturbative effects)

The leading twist distribution amplitude

Operators that contribute at the leading order approximation:

$$< \mathbf{M}(\mathbf{p})|\overline{\mathbf{q}} \gamma_{\mu}\gamma_{5} \mathbf{D}_{\mu_{1}}...\mathbf{D}_{\mu_{n}}\mathbf{q}|0> \mathbf{z}^{\mu}\mathbf{z}^{\mu_{1}}...\mathbf{z}^{\mu_{n}} \sim (\mathbf{p}\mathbf{z})^{n+1} \int_{-1}^{1} d\xi \xi^{n} \varphi(\xi), \quad \mathbf{z}^{2} = 0, \quad \xi = x_{1} - x_{2}$$

Distribution amplitude $\varphi(\xi)$ can be considered as a meson wave function.

Leading twist bottomonia decays

Leading twist decays

- C=-1 bottomonia are suppressed
- Leading twist decays $J_{bb} = 0, 2$

The amplitudes of the decays $T = \int d\xi_1 d\xi_2 H(\xi_1, \xi_2) \times \varphi_1(\xi_1) \varphi_2(\xi_2)$

Charmonia distribution amplitudes

- Distribution amplitudes of the S-wave charmonia
 3 DAS, Phys.Lett.B646,80,(2007), Phys.Rev.D75:094016,(2007), Phys.Rev.D77:034026,(2008)
- Distribution amplitudes of the P-wave charmonia 7 DAS, Phys. Rev. D79:074004, (2009)

$$\langle v^2 \rangle_{1S} = 0.21 \pm 0.04 \quad \langle v^2 \rangle_{2S} = 0.54^{+0.33}_{-0.36} \quad \langle v^2 \rangle_{2P} = 0.30 \pm 0.10$$

Charmonia are unique mesons since one can build realistic models of charmonia distribution amplitudes

M_1M_2	Γ _{NRQCD} , eV	Γ_{LC} , eV	Br _{LC} , %
$\eta_b \rightarrow h_c J/\psi$	$73^{+15}_{-11} \pm 38. \pm 37.$	$520^{+44}_{-45} \pm 59. \pm 140.$	0.0047
$\eta_b \rightarrow h_c \psi(2S)$	$39.^{+7.8}_{-6} \pm 26. \pm 19.$	$300.^{+28.}_{-28.} \pm 33. \pm 78.$	0.0027
$\eta_b \rightarrow \eta_c \chi_{c0}$	$56.^{+18.}_{-14} \pm 29. \pm 28.$	$49^{+4.1}_{-1} \pm 25^{-1}_{-1} \pm 71^{-1}_{-1}$	4.5×10^{-4}
$\eta_b \rightarrow \eta_c (2S) \chi_{c0}$	$30^{+9.3}_{-9.3} \pm 20. \pm 15.$	$26^{+2.4}_{-2.4} \pm 18. \pm 37.$	2.3×10^{-4}
$m_1 \rightarrow m_r \gamma_{r'}$	$17.^{+5.2}_{-5.2} \pm 8.9 \pm 8.6$	$97.^{+8.2}_{-8.1} \pm 48. \pm 71.$	8.9×10^{-4}
$m \rightarrow n_c(2S)\chi_{c2}$	$9.1^{+2.6}_{-2.6} \pm 6.1 \pm 4.6$	$51^{+4.8}_{+4.8} \pm 35. \pm 37.$	4.6×10^{-4}
$\pi_b \rightarrow \chi_{c0} \chi_{c1}$	$11^{+2} \pm 8.4 \pm 5.5$	$26^{+2.2}_{-2.2} \pm 13_{-} \pm 38_{-}$	2.4×10^{-4}
$\pi_b \rightarrow \chi_{c1} \chi_{c2}$	$4.7^{+1.2} \pm 3.6 \pm 2.4$	$51^{+4.4}_{-4.4} \pm 26_{-} \pm 37_{-}$	4.7×10^{-4}
$\chi_{12} \rightarrow \pi_{12}\chi_{13}$	$12^{+2.4} + 6.1 + 5.8$	$53^{+2.4}_{-4.3} \pm 26 \pm 17$	0.0064
$\chi_{i\alpha} \rightarrow \eta_{\alpha}(2S)\chi_{\alpha}$	$62^{+1.3} \pm 42 \pm 31$	$39^{+5.2}_{-2.3} \pm 27^{-1}_{-1.1} \pm 13^{-1}_{-1.1}$	0.0048
$\chi_{ac} \rightarrow \chi_{c} \chi_{c}$	$(5.9^{+42} \pm 4.5 \pm 2.9) \times 10^{-4}$	$0.81^{+0.19} \pm 0.41 \pm 1.8$	10^{-4}
, 200 · , 200, 222	$40^{+11} + 25 + 25$	$5.01_{-0.18} \pm 0.01 \pm 1.0$ $5.1^{+2.1} \pm 95 \pm 16$	0.0082
$\chi_{00} \rightarrow \eta_e \eta_e$	$96^{+0.7} \pm 17 \pm 12$	$76^{+9.7} \pm 80 \pm 94$	0.0002
$\chi_{00} \rightarrow \eta_e \eta_e(20)$	$14^{+3} + 15^{+6} = 60$	$10{-11} \pm 02. \pm 24.$ $20 \pm 7.2 \pm 28. \pm 0.6$	0.0036
$\chi_{60} \rightarrow \eta_e(\Delta D) \eta_e(\Delta D)$	$14{-2.5} \pm 15.\pm 0.5$ $97^{+5} \pm 10 \pm 12$	$30{-8.4} \pm 20. \pm 9.0$ $70 \pm 3.2 \pm 0.7 \pm 9.6$	0.0006
$\chi_{b0} \rightarrow J/\psi J/\psi$	$21{-4.2} \pm 19. \pm 13.$ $14^{+2.6} \pm 0.2 \pm 7.1$	$130^{+16} \pm 4 \pm 41$	0.0096
$\chi_{b0} \rightarrow J/\psi\psi(2S)$	$14{-2.2} \pm 9.3 \pm 7.1$ $78^{+1.4} \pm 9.2 \pm 9.2$	$130{-19.}^{-} \pm 4. \pm 41.$ $84^{+13.} \pm 1.8 \pm 17$	0.016
$\chi_{b0} \rightarrow \psi(2S)\psi(2S)$	$1.3_{-1.2} \pm 8.3 \pm 3.8$	$34{15.} \pm 1.3 \pm 17.$ $18 + 3.5 \pm 2.2 \pm 2.0$	0.0066
$\chi_{b0} \rightarrow h_c h_c$	$0.094_{-0.029} \pm 0.072 \pm 0.047$ $0.048^{+0.091} \pm 0.027 \pm 0.024$	$13{3.3} \pm 2.3 \pm 3.9$ $0.01\pm0.048 \pm 0.11 \pm 1.1$	0.0018 0 K v 10 ⁻⁰
$\chi_{b0} \rightarrow \chi_{c0} \chi_{c0}$	$0.048_{-0.034}^{\circ} \pm 0.037 \pm 0.024$ 0.86 \pm 0.36 $\pm 0.42 \pm 0.28$	$0.21_{-0.046} \pm 0.11 \pm 1.1$	2.5 X 10
$\chi_{b0} \rightarrow \chi_{c1}\chi_{c1}$	$0.36_{-0.16}^{+} \pm 0.43 \pm 0.28$ $0.098^{+9.034}_{-} \pm 0.02 \pm 0.012$	$14{-0.87} \pm 0.8 \pm 15.$	0.0017
$\chi_{b0} \rightarrow \chi_{c2}\chi_{c2}$	$0.020_{-0.013}^{+} \pm 0.02 \pm 0.013$	$0.81_{-0.18}^{+} \pm 0.4 \pm 1.8$	9.9 X 10
$\chi_{b1} \rightarrow h_c J/\psi$	$1.2^{+0.19}_{-0.19} \pm 0.64 \pm 0.61$	$14.^{-1.7}_{-1.7} \pm 1.6 \pm 4.6$	8.9 × 10
$\chi_{b1} \rightarrow h_c \psi(2S)$	$0.65^{+0.1}_{-0.1} \pm 0.44 \pm 0.32$	$15.^{+4.}_{-4.4} \pm 1.7 \pm 4.7$	9.2×10^{-4}
$\chi_{b1} \rightarrow \eta_c \chi_{c0}$	$0.24^{+0.031}_{-0.05} \pm 0.13 \pm 0.12$	$1.3^{+0.16}_{-0.16} \pm 0.67 \pm 0.43$	8.3×10^{-5}
$\chi_{b1} \rightarrow \eta_c(2S)\chi_{c0}$	$0.13_{-0.027}^{+0.027} \pm 0.087 \pm 0.064$	$1.3^{+0.13}_{-0.38} \pm 0.89 \pm 0.41$	8. × 10
$\chi_{b1} \rightarrow \eta_c \chi_{c2}$	$0.74^{+0.13}_{-0.12} \pm 0.38 \pm 0.37$	$2.7^{+0.33}_{-0.31} \pm 1.3 \pm 0.42$	1.7×10^{-4}
$\chi_{b1} \rightarrow \eta_c(2S)\chi_{c2}$	$0.39^{+0.063}_{-0.063} \pm 0.26 \pm 0.19$	$2.5^{+0.05}_{-0.75} \pm 1.8 \pm 0.41$	1.6×10^{-4}
$\chi_{b1} \rightarrow \chi_{c0}\chi_{c1}$	$0.6^{+0.11}_{-0.18} \pm 0.45 \pm 0.3$	$0.68^{+0.088}_{-0.086} \pm 0.35 \pm 3.4$	4.3×10^{-5}
$\chi_{b1} \rightarrow \chi_{c1}\chi_{c2}$	$0.13^{+0.034}_{-0.019} \pm 0.098 \pm 0.064$	$1.4^{+0.17}_{-0.17} \pm 0.68 \pm 0.43$	8.4×10^{-3}
$\chi_{b2} \rightarrow \eta_c \chi_{c1}$	$1.8^{+0.31}_{-0.29} \pm 0.92 \pm 0.88$	$17.^{+0.53}_{-0.52} \pm 8.2 \pm 2.7$	0.0069
$\chi_{b_2} \rightarrow \eta_c(2S)\chi_{c_1}$	$0.93^{+0.17}_{-0.15} \pm 0.63 \pm 0.47$	$11^{+1.1}_{-1.3} \pm 7.6 \pm 1.8$	0.0046
$\chi_{b2} \rightarrow \chi_{c0} \chi_{c2}$	$0.58^{+0.31}_{-0.17} \pm 0.44 \pm 0.29$	$1.4^{+0.21}_{-0.2} \pm 0.72 \pm 6.1$	5.8×10^{-4}
$\chi_{b2} \rightarrow \eta_c \eta_c$	$1.6^{+0.5}_{-0.49} \pm 1.1 \pm 0.78$	$16^{+0.47}_{-0.43} \pm 7.8 \pm 10$.	0.0066
$\chi_{b2} \rightarrow \eta_c(2S)\eta_c$	$0.83^{+0.26}_{-0.26} \pm 0.54 \pm 0.41$	$21^{+2.1}_{-2.5} \pm 15. \pm 14.$	0.0088
$\chi_{b_2} \rightarrow \eta_c(2S)\eta_c(2S)$	$0.44^{+0.14}_{-0.14} \pm 0.49 \pm 0.22$	$8.^{+1.7}_{-2.} \pm 6.7 \pm 5.1$	0.0033
$\chi_{b2} \rightarrow J/\psi J/\psi$	$65^{+34}_{-32} \pm 46. \pm 32.$	$270.^{+10.}_{-9.1} \pm 41. \pm 93.$	0.11
$\chi_{b2} \rightarrow \psi(2S)J/\psi$	$34.^{+7.6}_{-6.2} \pm 23. \pm 17.$	$380.^{+45.}_{-53.} \pm 120. \pm 130.$	0.16
$\chi_{b2} \rightarrow \psi(2S)\psi(2S)$	$18.^{+4.}_{-3.3} \pm 20. \pm 9.1$	$140.^{+34.}_{-39.} \pm 59. \pm 50.$	0.059
$\chi_{b2} \rightarrow h_c h_c$	$0.42^{+0.11}_{-0.1} \pm 0.32 \pm 0.21$	$37.^{+4.4}_{-4.2} \pm 8. \pm 24.$	0.015
$\chi_{b2} \rightarrow \chi_{c0} \chi_{c0}$	$0.014^{+0.0038}_{-0.0038} \pm 0.011 \pm 0.0072$	$0.36^{+0.063}_{-0.051} \pm 0.18 \pm 0.11$	$1.5 imes 10^{-4}$
$\chi_{b2} \rightarrow \chi_{c1}\chi_{c1}$	$0.18^{+0.057}_{-0.059} \pm 0.14 \pm 0.089$	$8^{+0.86}_{-0.83} \pm 4.7 \pm 4.$	0.0033
$\chi_{b2} \rightarrow \chi_{c2}\chi_{c2}$	$0.2^{+0.043}_{-0.049} \pm 0.15 \pm 0.098$	$9.8^{+1.9}_{-1.8} \pm 7.7 \pm 0.8$	0.004
$\chi_{b2} \rightarrow h_c J/\psi$	$7.6^{+1.5}_{-1.5} \pm 4. \pm 3.8$	$100.^{+4.4}_{-4.2} \pm 42. \pm 24.$	0.042
$\chi_{b2} \rightarrow h_c \psi(2S)$	$4^{+0.79}_{-0.78} \pm 2.7 \pm 2.$	$71.^{+8.6}_{-10.} \pm 36. \pm 17.$	0.029
$\chi_{b2} \rightarrow \chi_{c1} \chi_{c2}$	$0.32^{+0.067}_{-0.042} \pm 0.24 \pm 0.16$	$11.^{+2.2}_{-2.1} \pm 9.5 \pm 0.047$	0.0045

Braguta, Likhoded, Luchinsky, Phys.Rev.D80:094008,2009

- Helicity conservation + angular momentum conservation => $\Lambda_{J/\Psi}=0$
- Helicity flip in gluon-quark-quark vertex leads to the suppression of the amplitude

 $\underline{n}_{b} \rightarrow J/\Psi J/\Psi$ is a next-to-next-to-leading twist process

Higher twist distribution amplitudes

$$Expansion in Fock states$$

$$|Meson\rangle = |Q\overline{Q}\rangle + |Q\overline{Q}g\rangle + |Q\overline{Q}gg\rangle + |Q\overline{Q}gg\rangle + |Q\overline{Q}q\overline{q}\rangle + ...$$

$$\underset{twist-3, twist-4, twist-5, twis$$

Higher twist decays as a probe of charmonia structures

Distribution amplitudes of J/Y up to twist-4

$$\begin{split} \langle J/\psi(p,\epsilon)|\bar{c}(x)\gamma_{\rho}[x,-x]c(-x)|0\rangle &= f_{V}M_{V}\left[\frac{(\epsilon x)}{(px)}p_{\rho}\int_{-1}^{1}d\xi e^{i\xi(px)}\left(\varphi_{1}(\xi,\mu)+\frac{M_{V}^{2}x^{2}}{4}\varphi_{2}(\xi,\mu)\right)\right.\\ &+ \left(\epsilon_{\rho}-p_{\rho}\frac{(\epsilon x)}{(px)}\right)\int_{-1}^{1}d\xi e^{i\xi(px)}\varphi_{3}(\xi,\mu)\\ &- \frac{1}{2}x_{\rho}\frac{(\epsilon x)}{(px)^{2}}M_{V}^{2}\int_{-1}^{1}d\xi e^{i\xi(px)}\varphi_{4}(\xi,\mu)\right],\\ \langle J/\psi(p,\epsilon)|\bar{c}(x)\sigma_{\rho\lambda}[x,-x]c(-x)|0\rangle &= f_{T}(\mu)\left[\left(\epsilon_{\rho}p_{\lambda}-\epsilon_{\lambda}p_{\rho}\right)\int_{-1}^{1}d\xi e^{i\xi(px)}\left(\chi_{1}(\xi,\mu)+\frac{M_{V}^{2}x^{2}}{4}\chi_{2}(\xi,\mu)\right)\right.\\ &+ \left(p_{\rho}x_{\lambda}-p_{\lambda}x_{\rho}\right)\frac{(\epsilon x)}{(px)^{2}}M_{V}^{2}\int_{-1}^{1}d\xi e^{i\xi(px)}\chi_{3}(\xi,\mu)\\ &+ \frac{1}{2}(\epsilon_{\rho}x_{\lambda}-\epsilon_{\lambda}x_{\rho})\frac{M_{V}^{2}}{(px)}\int_{-1}^{1}d\xi e^{i\xi(px)}\chi_{4}(\xi,\mu)\right],\\ \langle J/\psi(p,\epsilon)|\bar{c}(x)\gamma_{\rho}\gamma_{5}[x,-x]c(-x)|0\rangle &= f_{A}(\mu)e_{\rho\lambda\alpha\beta}\epsilon^{\lambda}p^{\alpha}x^{\beta}\int_{-1}^{1}d\xi e^{i\xi(px)}\Phi_{1}(\xi,\mu),\\ \langle J/\psi(p,\epsilon)|\bar{c}(x)[x,-x]c(-x)|0\rangle &= -if_{S}(\mu)(\epsilon x)\int_{-1}^{1}d\xi e^{i\xi(px)}\Phi_{2}(\xi,\mu), \end{split}$$

There are 10 distribution amplitudes needed in the calculation

The result of the calculation

$$F = \int d\xi_1 d\xi_2 H(\xi_1, \xi_2, \mu) \left(f_V f_A(\mu) M_{J/\psi} \varphi_1(\xi_1, \mu) \Phi_1(\xi_2, \mu) + f_V f_A(\mu) M_{J/\psi} \varphi_1(\xi_2, \mu) \Phi_1(\xi_1, \mu) \right) \\ + f_S(\mu) f_T(\mu) \chi_1(\xi_2, \mu) \Phi_2(\xi_1, \mu) + f_S(\mu) f_T(\mu) \chi_1(\xi_1, \mu) \Phi_2(\xi_2, \mu) \right).$$
$$H(\xi_1, \xi_2, \mu) = \frac{1024\pi^2 \alpha_s^2(\mu)}{27} f_{\eta_b} \frac{1}{M_{\eta_b}^6} \frac{1}{(1 - \xi_1^2)(1 - \xi_2^2)(1 + \xi_1 \xi_2)},$$

$$\begin{aligned} \langle J/\psi(p,\epsilon)|\bar{c}(0)\gamma_{\mu}c(0)|0\rangle &= f_{V}M_{J/\psi}\epsilon_{\mu}, \quad \langle J/\psi(p,\epsilon)|\bar{c}(0)\sigma_{\mu\nu}c(0)|0\rangle &= f_{T}(\mu)\left(\epsilon_{\mu}p_{\nu}-\epsilon_{\nu}p_{\mu}\right)\\ f_{A}(\mu) &= \frac{1}{2}\left(f_{V}-f_{T}(\mu)\frac{2m_{c}(\mu)}{M_{J/\psi}}\right)M_{J/\psi}, \quad f_{S}(\mu) &= \left(f_{T}(\mu)-f_{V}\frac{2m_{c}(\mu)}{M_{J/\psi}}\right)M_{J/\psi}^{2} \end{aligned}$$

Fine tuning between parameters at the leading order approximation in NRQCD

$$\frac{f_T}{f_V} = 1 - \frac{\langle v^2 \rangle_{J/\psi}}{3}, \quad \frac{M_{J/\psi}}{2m_c} = 1 + \frac{\langle v^2 \rangle_{J/\psi}}{2}, \quad \langle v^2 \rangle_{J/\psi} \sim 0.2$$
$$F = \frac{256\pi^2 \alpha_s^2}{81} \frac{1}{m_b^6} f_{\eta_b} f_V^2 m_c^2 \langle v^2 \rangle$$

Fine tuning is broken due to relativistic and radiative corrections what leads to the dramatic enhancement of the branching ratio

Numerical results

 $\begin{array}{rcl} Br(\eta_b \to J/\psi J/\psi) &=& (6.2 \pm 3.5) \times 10^{-7}, \\ Br(\eta_b \to J/\psi \psi') &=& (10 \pm 6) \times 10^{-7}, \\ Br(\eta_b \to \psi' \psi') &=& (3.7 \pm 2.8) \times 10^{-7}. \end{array}$

Braguta, Kartvelishvili, Phys.Rev.D81:014012,2010

$$Br(\eta_b \to J/\Psi J/\Psi) = (0.5 \times 10^{-8} - 1.2 \times 10^{-5}) \text{ Santorelli, Phys.Rev.D77:} 074012,2008$$

$$Br(\eta_b \to J/\Psi J/\Psi) = 2.4^{+4.2}_{-1.9} \times 10^{-8} \text{ Jia, Phys.Rev.D78:} 054003,2008$$

$$Br(\eta_b \to J/\Psi J/\Psi) = (2.1 - 18.6) \times 10^{-8} \text{ Gong et al., Phys.LettB670:} 350,2009$$

Approximately 100 events of the $n_b \rightarrow J/\Psi J/\Psi$ decay at LHC per year

