Charmonium above deconfinement as an open quantum system

Clint Young

SUNY Stony Brook

May 20, 2010

C. Young (Stony Brook)

Charmonium as an open quantum system

May 20, 2010 1 / 18

Modeling charmonium with a Langevin equation Heavy quark and quarkonium dynamics Quarkonium dynamics in sQGP as a stochastic process Properties of the J/ψ in sQGP

Quarkonium as an open quantum system

The path integral approach to quantum Brownian motion Imaginary-time correlators

Au+Au RHIC collisions

Langevin-with-interaction simulation of charmonium Recombinant production Anomalous J/ψ suppression for two values of T_c

Conclusions and future work

Heavy quark and quarkonium dynamics

Heavy quark diffusion: $3\kappa = \int d^3q |\mathbf{q}|^2 rac{d^3\Gamma}{dq^3}$

HTL approximation at NLO (Caron-Huot and Moore)[1]:

$$\kappa = \frac{16\pi}{3} \alpha_s^2 T^3 \left(\log(1/g_s) + .07428 + 1.9026g_s \right)$$
(1)

Drag force and diffusion from AdS/CFT (Gubser, Casalderrey-Solana and Teaney, Mia et al.) [2], [3], [4], [5]:

$$\kappa = \pi \sqrt{\lambda} T^3 \tag{2}$$

Phenomenology (Moore and Teaney) [6].

Q ar Q potential

- Lattice calculations of $Tr \langle W(\mathbf{x})W^{\dagger}(\mathbf{0}) \rangle$ (Kaczmarek et al.) [7].
- Internal or Free Energy? (Shuryak and Zahed) [8].
- Potential models (Mocsy and Petreczky) [9].

D_{HQ} vs. quarkonium diffusion

Quarkonium \neq two heavy quarks!

First AdS/CFT calculations for quarkonium suggested *zero drag*, only influence of the thermal medium from a "hot wind"

Dusling, ..., Young: Fluctuations on D7 in $AdS_5\times S_5$ dual to effective theory for dipoles

Momentum diffusion suppressed by factor of $1/N_c^2$, smaller than perturbative $\mathcal{N} = 4$ prediction by a factor of 4. Exact opposite of heavy quark situation!

D_{HQ} vs. quarkonium diffusion

Quarkonium \neq two heavy quarks!

First AdS/CFT calculations for quarkonium suggested *zero drag*, only influence of the thermal medium from a "hot wind"

Dusling, ..., Young: Fluctuations on D7 in $AdS_5\times S_5$ dual to effective theory for dipoles

Momentum diffusion suppressed by factor of $1/N_c^2$, smaller than perturbative $\mathcal{N} = 4$ prediction by a factor of 4. Exact opposite of heavy quark situation!

However, this treatment only valid when $E_B >> T$

Appropriate for $\Upsilon,$ inappropriate for J/ψ

 J/ψ dynamics at RHIC somewhere between "photoelectric effect" and "Rayleigh scattering"

Quarkonium dynamics in sQGP as a stochastic process

When M_{HQ} is sufficiently larger than T, the dynamics of each heavy quark can be described by

$$\frac{dp_i}{dt} = -\eta p_i + \xi_i - \nabla_i U, \qquad (3)$$

where

$$\langle \xi_i(t)\xi_j(0)\rangle = \kappa \delta_{ij}\delta(t).$$
 (4)

Requiring thermalization to temperature T yields the Einstein relation between noise and dissipation:

$$\eta = \frac{\kappa}{2MT}.$$
(5)

Evolution of an ensemble of $Q\bar{Q}$ pairs in sQGP

The probability for a $Q\bar{Q}$ pair to be bound as a function of time:

- **Green:** $2\pi TD_c = 1.5$
- **Red:** $2\pi TD_c = 3.0$
- **Blue:** $2\pi TD_c = 1.5$, no $Q\bar{Q}$ interaction

Summary of $Q\bar{Q}$ in sQGP

- Thermalization in momentum space relatively fast, spatial diffusion relatively slow.
- The $Q\bar{Q}$ -potential can greatly enhance the survival probability.
- Quasi-equilibrium forms: relative abundances predicted by Boltzmann factors.

Summary of $Q\bar{Q}$ in sQGP

- Thermalization in momentum space relatively fast, spatial diffusion relatively slow.
- The $Q\bar{Q}$ -potential can greatly enhance the survival probability.
- Quasi-equilibrium forms: relative abundances predicted by Boltzmann factors.

An explanation for J/ψ survival at RHIC?

The reduced density matrix

Imagine a single degree of freedom minimally coupled to a bath:

$$L = \frac{1}{2}M\dot{x}^{2} - V(x) + \frac{1}{2}\sum_{i}m_{i}\dot{R}_{i}^{2} - \frac{1}{2}\sum_{i}m_{i}\omega_{i}^{2}R_{i}^{2} - \sum_{i}C_{i}xR_{i}.$$
(6)

The *reduced* density matrix

$$\rho_{red}(x, x', \beta) = \int dR_i \rho(x, R_i, x', R_i, \beta)$$

$$= \int Dx \exp(-\int_0^\beta d\tau [\frac{1}{2}M\dot{x}^2 + V(x)]$$

$$- \sum_i \frac{C_i^2}{2m_i\omega_i \sinh(\omega_i\beta/2)} x(\tau) \int_0^\tau ds \ x(s) \cosh(\omega_i(\tau - s - \beta/2))])$$
(7)

Caldeira and Leggett, 1983

Intuitively, when the proper infinite limit is taken for the bath, the dynamics for the heavy particle may be dissipative. The density of states

$$C^{2}(\omega)\rho_{D}(\omega) = \begin{cases} \frac{2m\eta\omega^{2}}{\pi} & \text{if } \omega < \Omega\\ 0 & \text{if } \omega > \Omega \end{cases}$$
(8)

yields Langevin dynamics when $\Omega \to \infty$, with η the usual drag coefficient.

Caldeira and Leggett, 1983

Intuitively, when the proper infinite limit is taken for the bath, the dynamics for the heavy particle may be dissipative. The density of states

$$C^{2}(\omega)\rho_{D}(\omega) = \begin{cases} \frac{2m\eta\omega^{2}}{\pi} & \text{if } \omega < \Omega\\ 0 & \text{if } \omega > \Omega \end{cases}$$
(8)

yields Langevin dynamics when $\Omega \to \infty$, with η the usual drag coefficient.

The reduced density matrix becomes, after integrating by parts and renormalizing...

The reduced density matrix for an open system

$$\rho_{red}(x_i, x_f, \beta) = \int_{x(0)=x_i}^{x(\beta)=x_f} \mathcal{D}x \exp\left\{-S_S^E[x]\right] \\ - \frac{\eta}{2\pi}(x_i - x_f)^2 \left[\gamma_E + \ln\left(\frac{\eta\beta}{\pi M}\right)\right] \\ + \frac{\eta}{\pi}(x_i - x_f) \int_0^\beta d\tau \, \dot{x}(\tau) \ln\sin\left(\frac{\pi\tau}{\beta}\right) \\ + \frac{\eta}{\pi} \int_0^\beta d\tau \int_0^\tau ds \, \dot{x}(\tau) \dot{x}(s) \ln\sin\left(\frac{\pi(\tau-s)}{\beta}\right) \right\}.$$
(9)

Quarkonium as an open quantum system

Imaginary-time correlators

1.12

0

0.1

0.2

τ [fm/c]

0.3

The effect of dissipation on $G_{rec}(\tau)$

M_{eff}=1.4 GeV

M_{bare}=1.4 GeV

0.4

0.5

Langevin-with-interaction simulation of charmonium

- LO PYTHIA event generation
- 2+1-dimensional hydrodynamical simulation of the plasma phase
- Langevin+interaction evolution of the $c\bar{c}$ pairs

Another consideration: recombinant production

- With many hard processes per collision, the possibility of recombinant production needs to be considered.
- \blacktriangleright May lead to less suppression or even an enhancement of J/ψ yields at the LHC

Another consideration: recombinant production

- With many hard processes per collision, the possibility of recombinant production needs to be considered.
- \blacktriangleright May lead to less suppression or even an enhancement of J/ψ yields at the LHC

Facts about charm production at the RHIC:

- ▶ On average 18 pairs produced in the most central Au+Au collisions.
- Only 5.5% of charm quarks produced are "neighbors" (close enough to form a bound state) with a single anti-quark. Only an additional 0.2% have more than one neighbor.

Anomalous J/ψ suppression for two values of T_c

For $T_c = 165$ MeV:

For $T_c = 190$ MeV:

Can differential p_T yields differentiate between the two components?

The surviving component in the periphery of the transverse plane, the recombinant peaked in the center.

Conclusions and future work

A model for J/ψ suppression and charmonium thermalization at the RHIC proposed which is *consistent with heavy quark dynamics in strongly-coupled gauge theory*.

Conclusions and future work

A model for J/ψ suppression and charmonium thermalization at the RHIC proposed which is *consistent with heavy quark dynamics in strongly-coupled gauge theory*.

Dissipative dynamics affects lattice quarkonium correlators.

Conclusions and future work

A model for J/ψ suppression and charmonium thermalization at the RHIC proposed which is *consistent with heavy quark dynamics in strongly-coupled gauge theory*.

Dissipative dynamics affects lattice quarkonium correlators.

Future work

Calculate surviving and recombinant yields at the LHC

Extract spectral functions for quarkonium correlators with the maximal entropy method, *decouple "disassociation rates" in this model from hydrodynamics simulations*

Other observables at the RHIC?

What more can AdS/CFT tell us about quarkonium?

Conclusions and future work

A model for J/ψ suppression and charmonium thermalization at the RHIC proposed which is *consistent with heavy quark dynamics in strongly-coupled gauge theory*.

Dissipative dynamics affects lattice quarkonium correlators.

Future work

Calculate surviving and recombinant yields at the LHC

Extract spectral functions for quarkonium correlators with the maximal entropy method, *decouple "disassociation rates" in this model from hydrodynamics simulations*

Other observables at the RHIC?

What more can AdS/CFT tell us about quarkonium?

Thanks!

References I

- S. Caron-Huot and G. D. Moore, Phys. Rev. Lett. 100, 052301 (2008) [arXiv:0708.4232 [hep-ph]].
- S. S. Gubser, Phys. Rev. D 74, 126005 (2006) [arXiv:hep-th/0605182].
- J. Casalderrey-Solana and D. Teaney, Phys. Rev. D **74**, 085012 (2006) [arXiv:hep-ph/0605199].
- J. Casalderrey-Solana, K. Y. Kim and D. Teaney, JHEP **0912**, 066 (2009) [arXiv:0908.1470 [hep-th]].
- M. Mia, K. Dasgupta, C. Gale and S. Jeon, arXiv:0902.1540 [hep-th].
- G. D. Moore and D. Teaney, Phys. Rev. C 71, 064904 (2005) [arXiv:hep-ph/0412346].
- O. Kaczmarek and F. Zantow, Phys. Rev. D 71, 114510 (2005) [arXiv:hep-lat/0503017].

References II

- E. V. Shuryak and I. Zahed, Phys. Rev. D 70, 054507 (2004) [arXiv:hep-ph/0403127].
- A. Mocsy and P. Petreczky, Phys. Rev. D 77, 014501 (2008) [arXiv:0705.2559 [hep-ph]].
- H. Liu, K. Rajagopal and U. A. Wiedemann, Phys. Rev. Lett. 98, 182301 (2007) [arXiv:hep-ph/0607062].
- K. Dusling, J. Erdmenger, M. Kaminski, F. Rust, D. Teaney and C. Young, JHEP **0810**, 098 (2008) [arXiv:0808.0957 [hep-th]].