

χ_{cJ} production at hadron colliders with QCD radiative corrections

In collaboration with Wang Kai and Chao Kuang-Ta

Ma Yan-Qing

(马滟青)

International Workshop on Heavy Quarkonia 2010.5.18 Fermi Lab

yqma.cn@gmail.com

Department of physics, Peking University

Contents

- 1. Introduction
- 2. Calculation
- 3. Result and Discussion
- 4. Summary

- 1. Introduction
- 2. Calculation
- 3. Result and Discussion
- 4. Summary

Puzzles in Charmonia

Advantage of χ_{cJ} relative to ψ

	J/ψ ψ'	χ_{cJ}
Number of Color-Octet	3	1
(CO) Matrix-Elements	$({}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{0}^{[8]})$	$(^{3}S_{1}^{[8]})$
Number of States	1	3
Leading contributions for	$lpha_{ m s}^{\ 5}$	$\alpha_{\rm s}^{4}$
Color-Singlet (CS) channel	(NNLO)	(NLO)
at high p _T		
Feed-down dependence	ψ'、 χ _c Ι	

Conclusion: χ_{cJ} production should be relatively easier to be understood – although P-wave.

χ_{cJ} production at Tevatron

•LO NRQCD prediction, dominated by CO channel at high p_T , is far away from the experiment data even though 0.1<r<10 (r \approx 1 based on NRQCD).

$$\frac{d\sigma_{\chi_{c2}}}{d\sigma_{\chi_{c1}}} \xrightarrow{p_T \gg m_c} \frac{5}{3}$$

•CEM is even worse: $d\sigma_{\chi_{c2}}/d\sigma_{\chi_{c1}} \equiv 5/3$

Why NLO?

- At LO in α_S , CO channel scales as $1/p_T^4$ (a), while CS channel is dominated by $1/p_T^6$ (b).
- Up to NLO in α_S , CS channel has $1/p_T^4$ (e) behavior.

- Although suppressed by α_S , CS channel may comparable with CO channel at NLO.
- NLO contribution is crucial in this problem.

- 1. Introduction
- 2. Calculation
- 3. Result and Discussion
- 4. Summary

Formalism

$$d\sigma_{\chi_{cJ}} = \sum_{i,j,n} \int dx_1 dx_2 G_{i/A} G_{j/B} \times \underbrace{\hat{\sigma}[ij \to c\overline{c}[n] + X]}_{m_c} \times \underbrace{\hat{\sigma}[ij \to c]}_{m_c} \times \underbrace{\hat{\sigma}[ij$$

PDF CTEQ6L1, CTEQ6M

Production of heavy quarks Short distance ($\sim 1/m_c$) process: perturbative calculation.

Main task in this work.

Hadronization

Long distance ($\sim 1/(m_c v)$) process: non-perturbative calculations and input from experiments needed.

Code and packages

Self-written Mathematica code

Analyze process with bound state and generate parton-level sub processes

FeynArts

Generate parton-level Feynman amplitudes and Feynman Diagrams

Self-written Mathematica code

Perform tensor integral reduction and analytically simplify

Self-written C++ code

Perform phase space integration and convolution with PDF

IR singularities

- •Collinear singularities and soft singularities of S-wave channel: collinear factorization of PDF and KLN theorem
- •Soft Singularities of P-wave channel:

NRQCD MEs + Real + Virtual

$$\mathcal{M}^{\mathrm{R}}|_{s} = g \mu_{r}^{\epsilon} \varepsilon_{\mu} J_{f}^{a,\mu} \mathcal{M}_{f}^{Born}$$

$$\left|\mathcal{M}^{V}\right|_{s} = \frac{1}{2} g^{2} \mu_{r}^{2\epsilon} I_{ff} \mathcal{M}_{ff}^{Born}$$

Where
$$J_f^{a,\mu} = \frac{p_f^{\mu}}{p_f \cdot k} T_f^a$$
 and $I_{ff} = J_f^{a,\mu} J_{f,\mu}^a$

While \mathcal{M}_f^{Born} and \mathcal{M}_{ff}^{Born} are color connected born level amplitudes.

Why NRQCD?

It can be shown that,

$$\left(T_{f}^{a}T_{f}^{a}\mathcal{M}_{ff'}^{Born}\right)^{\dagger}\left(M^{Born}\right) = \left(T_{f}^{a}\mathcal{M}_{f}^{Born}\right)^{\dagger}\left(T_{f'}^{a}\mathcal{M}_{f'}^{Born}\right),$$

$$\left(T_{f}^{a}T_{f'}^{a}\mathcal{M}_{ff'}^{Born}\right)\left(M^{Born}\right)^{\dagger} = \left(T_{f}^{a}\mathcal{M}_{f}^{Born}\right)\left(T_{f'}^{a}\mathcal{M}_{f'}^{Born}\right)^{\dagger}, f' \neq Q, \overline{Q}$$

So only terms that are not canceled between Real and Virtual are:

$$\left|-g^{2}\mu_{r}^{2\epsilon}\varepsilon^{\alpha}\varepsilon^{\beta}\frac{\partial J_{F}^{a,\mu}}{\partial q^{\alpha}}\frac{\partial J_{F',\mu}^{a}}{\partial q^{\beta}}\left|\mathcal{M}^{Born}\right|_{FF'}^{2},(1)\right|\left|\frac{1}{2}g^{2}\mu_{r}^{2\epsilon}\varepsilon^{\alpha}\varepsilon^{\beta}\frac{\partial \left(I_{FF'}\mathcal{M}_{FF'}^{Born}\right)^{\dagger}}{\partial q^{\alpha}}\frac{\partial \left(\mathcal{M}^{Born}\right)}{\partial q^{\alpha}}+c.c.,(2)\right|$$

$$\frac{1}{2}g^{2}\mu_{r}^{2\epsilon}\varepsilon^{\alpha}\varepsilon^{\beta}\frac{\partial\left(I_{FF},\mathcal{M}_{FF},\mathcal{M}_{FF},\mathcal{A}_{FF},$$

Where F, F' = Q, Q and q is the relative momentum of heavy quarks.

(2) = 0 because of color-singlet nature: $\delta_{C_Q C_{\overline{Q}}} \sum_{F=Q,\overline{Q}} J_F^{a,\mu}|_{q=0} = 0$

$$\delta_{C_{\mathcal{Q}}C_{\overline{\mathcal{Q}}}} \sum_{F=Q,\overline{Q}} J_F^{a,\mu} \big|_{q=0} = 0$$

Finally, (1) is absorbed by NRQCD MEs

- 1. Introduction
- 2. Calculation
- 3. Result and Discussion
- 4. Summary

K factor

- Large but negative corrections are found.
- •CS channel of χ_{c2} declines much faster than χ_{c1} .

Different behavior from CO channel.

Large corrections are originated from $p_T/(2m_c)$

Subtraction scheme and NRQCD renormalization scale dependent.

Ratio of χ_{c2} to χ_{c1}

NLO NRQCD fit the experiment data well.

Cross section for r=0.27

- 1. Introduction
- 2. Calculation
- 3. Result and Discussion
- 4. Summary

Summary

- 1. Based on NRQCD, we calculate the NLO correction to the χ_{cJ} production at Tevatron and LHC, which presents the $1/p_T^4$ behavior of CS channel.
- 2. Our result indicates that NRQCD is consistent with the experiment data of χ_{cJ} production while CEM is not.
- 3. To further test NRQCD and determine the CO matrix-elements, data at high p_T in LHC is expected.
- 4. Our study also shine some lights on J/ψ hadron production.

Back up

