Fragmentation-Function Approach to Heavy Quarkonium Production

Jianwei Qiu Brookhaven National Laboratory Stony Brook University Iowa State University

Based on work done with Kang, Nayak, Sterman, and etc.

Jianwei Qiu, BNL/SB May 20, 2010

Outline

Heavy quarkonium has two intrinsic scales

- □ Surprises from heavy quarkonium production
- □ PQCD factorization approach to heavy quarkonium
 - production at collider energies
- **Quarkonium polarization**
- □ Summary and outlook

Heavy quarkonium has two intrinsic scales

□ Heavy quark mass:

Heavy quark pairs are produced at a distance scale much less than fm

 $\frac{\left|M^2 - 4m_Q^2\right|}{4m_Q^2} \ll 1$

$$\Delta r \sim \frac{1}{2m_Q} \le 0.1 \text{ fm (for a charm-quark pair)}$$
$$\le 0.025 \text{ fm (for a b-quark pair)}$$

PQCD is "expected" to work for the production of heavy quarks

Quarkonium's nonperturbative binding:

for both charm and bottom quarkonia

The transition from a heavy quark pair to a quarkonium is Not perturbatively calculable

Different treatment m Different production model

Color Singlet Model – Huge high order corrections

CEM: OK for inclusive production

\Box Good for total cross section, ok for P_T distribution:

Amundson et al, PLB 1997

NRQCD Model: Best fit to Tevatron data

\Box Unpolarized J/ ψ at the Tevatron:

Good description
for various inclusive
heavy quarkonium
production

NRQCD matrix
elements fixed
by data

Polarization of quarkonium at Tevatron

 \Box Measure angular distribution of $\mu^+\mu^-$ in J/ ψ decay

Normalized distribution:

$$I(\cos\theta^*) = \frac{3}{2(\alpha+3)} \left(1 + \alpha\cos\theta^*\right)$$

- $\alpha = \begin{cases} +1 & \text{fully transverse} \\ 0 & \text{unpolarized} \\ -1 & \text{fully longitudinal} \end{cases}$

Surprises from J/ψ polarization

Cho & Wise, Beneke & Rothstein, 1995, ...

P_T(GeV) Lansberg, 2009

Role of higher order contribution?

Confusions from Upsilon polarization

Resolution between CDF and D0?

P. Artoisenet, et al. 2008

Questions

Why the high order correction in CSM is so large? How many orders should we calculate?

Why the high order CSM predicts the longitudinally polarized J/psi?

□ What happen to the octet channel of quarkonium production and the NRQCD formalism?

CSM: explicit high order calculation

□ Next-to-leading order (NLO):

Artoisenet et al. 2007

 $+\dots$ > 10 times LO

□ Next-to-next-to leading order (NNLO): Artoisenet et al. 2008

+... > 10 times NLO

□ What happens to NNNLO ... ?

Why high orders in CSM are so large?

□ Partonic hard part in CSM:

Expansion in power of α_s

$$\hat{\sigma}_{ab\to Q\bar{Q}}(p_T, m_Q, \mu, \alpha_s(\mu)) = \sum_n \hat{\sigma}_{ab\to Q\bar{Q}}^{(n)}(p_T, m_Q, \mu) \left(\frac{\alpha_s(\mu)}{2\pi}\right)^n$$

□ Complication with two observed momentum scales:

 $\Rightarrow \text{IF } p_T^2 \gg m_Q^2 \text{, high order in } \alpha_{\rm s} \text{ is not necessary small!}$ Ambiguity in choosing the scale μ

the size of the hard coefficients depends where the singlet pair was produced!

QCD power counting

□ Non-relativistic s=1 projection operator:

$$\mathcal{P}(P,q \to 0, s=1) = \frac{1}{\sqrt{2m_Q}} \gamma_\mu \epsilon^\mu_\lambda(P) \left[\gamma \cdot \frac{P}{2} + m_Q\right]$$

 $\frac{1}{m_Q}$

Does not pick up leading power in m_Q/p_T

Power counting for the hard part:

$$\frac{1}{p_T^4} \left[\log(\frac{p_T^2}{\mu_0^2}) \right]^n \left[\frac{m_Q^2}{\mu_0^2}, \dots \right] \qquad \mu_0 \sim 2m_Q$$

$$\frac{1}{p_T^6} \left[\log(\frac{p_T^2}{\mu_0^2}) \right]^n \left[m_Q^2 \left(\log \frac{\mu_0^2}{m_Q^2}, \frac{m_Q^2}{\mu_0^2}, \dots \right) \right]$$

Neutralize the color at 1/2m_Q

Leading power quark-antiquark channel

I NLO in α_s may be leading in m_Q/p_T power:

□ LO quark-antiquark fragmentation – no evolution yet:

$$D_{[c\bar{c}(a8)]\to J/\psi}^{(1)}(z,m_c,\mu) = \frac{\alpha_s \langle \mathcal{O}^1(^3S_1) \rangle}{27\pi m_c} \left\{ z(1-z) \ln\left[\frac{z}{1-z} \left(\frac{\mu^2}{4m_c^2} - 1\right)\right] + (1-z)^2 \left[\frac{z}{1-z} - \frac{1}{\frac{\mu^2}{4m_c^2} - 1}\right] \right\}$$

Log's

power

PQCD factorization

□ Idea:

Kang, Qiu and Sterman, 2010

- \diamond Reorganize partonic hard part in terms of power expansion
- Resum logarithm contribution into "fragmentation functions"
- \diamond "Direct" contribution by the subtraction

□ Factorization:

Nonlogarithmic high order and high power terms

PQCD factorization formula

PQCD evolution of fragmentation functions

□ Single parton:

Kang, Qiu and Sterman, 2010

Heavy quark pair:

Same as normal DGLAP Difference from input distribution

 $D_{g \to J/\psi}(z,\mu_0,m_Q)$

Differ from DGLAP – still logarithmic Spin-color sensitive Infrared safe evolution Nonperturbative input distribution

$$\mu^{2} \frac{\partial}{\partial \mu^{2}} D_{[Q\bar{Q}(a8)] \to H}(z,\mu,m_{Q}) = \int_{z}^{1} \frac{dz'}{z'} D_{[Q\bar{Q}(a8)] \to H}(z',\mu,m_{Q}) \mathcal{K}_{a8 \to a8}^{(1)}(z/z',\alpha_{s}) \mathcal{K}_{a8 \to a8}^{(1)}(z,\alpha_{s}) = \frac{\alpha_{s}}{2\pi} (2C_{A}) \left(\left[\frac{z}{1-z} \right] + \frac{1}{4} \delta(1-z) \right)$$

Evolution dominated by octet channels

NRQCD or CSM for input distributions

□ Input distributions are universal and non-perturbative:

Should, in principle, be extracted from experimental data.

□ Single parton:

Nayak, Qiu and Sterman, 2005

 $D_{g \to J/\psi}(z,\mu_0,m_Q) \to \sum_{[Q\bar{Q}(c)]} \hat{d}_{g \to [Q\bar{Q}(c)]}(z,\mu_0,m_Q) \langle \mathcal{O}_{[Q\bar{Q}(c)]}(0) \rangle|_{\text{NRQCD}}$

Dominated by transverse polarization

□ Heavy quark pair:

Kang, Qiu and Sterman, 2010

 $D_{[Q\bar{Q}(\kappa)\to J/\psi}(z,\mu_0,m_Q)\to \sum_{[Q\bar{Q}(c)]}\hat{d}_{[Q\bar{Q}(\kappa)\to [Q\bar{Q}(c)]}(z,\mu_0,m_Q)\langle \mathcal{O}_{[Q\bar{Q}(c)]}(0)\rangle|_{\mathrm{NRQCD}}$

Dominated by longitudinal polarization

Above factorizations have not been proved

Heavy quarkonium polarization

FF reproduces the polarization of CSM at NLO

Summary and outlook

□ Proposed a new pQCD factorization formula for heavy quarkonium production in power expansion $\frac{m_Q^2}{p_T^2}$: $\sigma(p_T) = LP + NLP + "Direct"$

Both LP and NLP in hard production dominated by octet channels (octet single parton & octet QQbar pair)

Observed polarization of prompt quarkonium is a result of competition between LP and NLP

A global analysis of existing data in this formalism is needed to fix the nonperturbative matrix elements Make predictions for LHC! Thank you!