$Q\bar{q}q\overline{Q}$ charmonium threshold states and QQq potentials

Gunnar Bali

Universität Regensburg

Fermilab, 18 May 2010

QWG7

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II

- Lattice QCD
- Threshold charmonia
- Outlook I
- QQq baryonic potentials
- Outlook II

Charmonium results from GB & Christian Ehmann, arXiv:0710.0256, arXiv:0903.2947, arXiv:0911.1238, in prep.

QQq potentials from GB & Johannes Najjar, arXiv:0910.2824, in prep.

 $Q\bar{q}q\overline{Q}$ potentials (not discussed): GB & Martin Hetzenegger, in prep.

Input:
$$\mathcal{L_{QCD}} = -rac{1}{16\pi lpha_L} \textit{FF} + ar{q}_f (D \!\!\!/ + m_f) q_f$$

$$m_N^{\text{latt}} = m_N^{\text{phys}} \longrightarrow a$$

 $m_\pi^{\text{latt}}/m_N^{\text{latt}} = m_\pi^{\text{phys}}/m_N^{\text{phys}} \longrightarrow m_u \approx m_d$

. . .

Output: hadron masses, matrix elements, decay constants, etc...

Extrapolations:

- **(1)** $a \rightarrow 0$: functional form known.
- **2** $L \to \infty$: harmless but often computationally expensive.
- 3 $m_q^{\text{latt}} \rightarrow m_q^{\text{phys}}$: chiral perturbation theory (χPT) but m_q^{latt} must be sufficiently small to start with.

 $(m_{\rm PS}^{\sf latt}=m_\pi^{\sf phys}$ has only very recently been realized.)

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II
- Nori	d mosons				

C Ehmann, GB 07 ($n_f = 2$, $a^{-1} \approx 1.73$ GeV from m_N) ${}^{1}\mathrm{S_{0}}\, {}^{3}\mathrm{S_{1}}\, {}^{1}\mathrm{P_{1}}\, {}^{3}\mathrm{P_{0}}\, {}^{3}\mathrm{P_{1}}\, {}^{3}\mathrm{P_{2}}\, {}^{1}\mathrm{D_{2}}\, {}^{3}\mathrm{D_{2}}\, {}^{3}\mathrm{D_{3}}\, {}^{1}\mathrm{F_{3}}\, {}^{3}\mathrm{F_{3}}$ 5.5 5.0 Y(4660) 4.5 (4415)(4350) ∧90/ш 4.0 X(4160) \U00c0 (4160 X(3943 X(3872) w(3770 3.5 lattice exotic 3.0 experiment 0⁻⁺ 1⁻⁻ 1⁺⁻ 0⁺⁺ 1⁺⁺ 2⁺⁺ 2⁻⁺ 2⁻⁻ 3⁻⁻ 3⁺⁻ 3⁺⁺ 1⁻⁺ 2⁺⁻

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II

Two state potentials GB, H Neff, T Düssel, T Lippert, Z Prkacin, K Schilling 04/05

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II
Two st	ate system:				

Eigenstates:

$$\begin{array}{ll} |1\rangle & = & \cos\theta \, |\overline{Q}Q\rangle + \sin\theta \, |B\overline{B}\rangle \\ |2\rangle & = & -\sin\theta \, |\overline{Q}Q\rangle + \cos\theta \, |B\overline{B}\rangle \end{array}$$

with $B = \overline{Q}q$.

Correlation matrix:

Coupled channel potential model for threshold effects ? Many channels $(D\overline{D}, D^*\overline{D}, D_s\overline{D}_s, D^*\overline{D}^*, \cdots) \Rightarrow$ many parameters!

However, very good to address qualitative questions: For what *I*, *S* and radial excitation do we get attraction/repulsion? Are Z^+ s possible and/or likely?

"Direct" calculation of the spectrum ?

We have to be able to resolve radial excitations!

(remember e.g. the very dense 1^{--} sector.)

Required: large basis of test wavefunctions including $c\bar{c}$, $c\bar{q}q\bar{c}$ and $cg\bar{c}$ operators and good statistics.

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II

$c\bar{c} \leftrightarrow \overline{D}D$ mixing (for $n_f = 2$) GB, C Ehmann 09/10:

 $(c\bar{c} \text{ annihilation diagrams negelected.})$

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II

 $n_f=2, \ a^{-1}pprox 2.59 \, {
m GeV}, \ Lapprox 1.83 \, {
m fm}, \ m_{
m PS}pprox 290 \, {
m MeV}$

Eigenvector components of the J/ψ . Components of the $D_1\overline{D}$.

Eigenvector components of the χ_{c1} . Components of the $D^*\overline{D}$.

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II
Outlook	l				

- \exists first simulations near the physical m_{π} at $a^{-1} \approx 2$ GeV.
- \exists first precision calculations of annihilation and mixing diagrams.
- Study of $c\bar{c} \leftrightarrow c\bar{q}q\bar{c}$ is well on its way.
- The continuum limit is important, in particular for the fine structure.
- There will be a lot of progress in charmonium spectroscopy below and above decay thresholds in the next years.
- Forces between pairs of static-light mesons for different S and I are being studied, to qualitatively understand 4-quark binding (X(3872), Z⁺(4430) etc.).

Distance r between Q and Q in static-static-light baryon (QQq). In the limit $r \rightarrow 0$ this becomes a $\overline{Q}q$ static-light meson. For small r, the factorization

should hold:

$$\begin{split} V_{QQq}(r) &\simeq m_{\overline{Q}q} + \frac{1}{2} V_{\overline{Q}Q}(r) \quad (r \ll \Lambda^{-1}) \\ \text{(NB: the } 1/m \text{ corrections to the static limit are different, even at } r = 0.) \\ \text{Minimal string picture with } QQ \text{ tension} = \frac{1}{2} Q\overline{Q} \text{ string tension:} \\ V_{QQq}(r) &\simeq \text{const} + V_{\overline{Q}Q}(r) \quad (r \gg \Lambda^{-1}) \end{split}$$

How does the light quark see the two static quarks?

Figure: This is the HQET picture for $r \ll \Lambda^{-1}$.

Gunnar Bali (Regensburg)

How does the light quark see the two static quarks?

Figure: $r \gg \Lambda$: light quark is near static source.

Gunnar Bali (Regensburg)

How does the light quark see the two static quarks?

Figure: $r \gg \Lambda$: light quark is in the centre.

Gunnar Bali (Regensburg)

Construction of the states

	2	r = 0	r > 0		
Wave	Operator	$O'(3), O'_{h}$	$D'_{\infty h}, D'_{4h}$		
S	γ_5	$rac{1}{2}^+$, G_1^+	$\frac{1}{2g}$, G_{1g}		
<i>P</i> _	1	$rac{1}{2}^-$, G_1^-	$\frac{1}{2}u$, G_{1u}		
P_+	$\gamma_1 \Delta_1 - \gamma_2 \Delta_2 \oplus {cyclic}$	$\frac{3}{2}^{-}$, H^{-}	$\frac{\frac{3}{2}_{u}}{\frac{1}{2}_{u}} \parallel, \ G_{2u}$ $\frac{\frac{1}{2}_{u}}{\frac{1}{2}_{u}} \perp, \ G_{1u}$		
<i>D</i> _	$\gamma_5(\gamma_1\Delta_1-\gamma_2\Delta_2)\oplus {\sf cyclic}$	$\frac{3}{2}^{+}$, H^{+}	$\begin{array}{c} \frac{3}{2_g} \parallel, \ \mathcal{G}_{2g} \\ \frac{1}{2_g} \perp, \ \mathcal{G}_{1g} \end{array}$		
D_+	$\gamma_1 \Delta_2 \Delta_3 + \gamma_2 \Delta_3 \Delta_1 + \gamma_3 \Delta_1 \Delta_2$	$\frac{5}{2}^+$, G_2^+	$rac{1}{2g}/rac{5}{2g}$, G_{1g}		
<i>F</i> _	$\gamma_5(\gamma_1\Delta_2\Delta_3+\gamma_2\Delta_3\Delta_1+\gamma_3\Delta_1\Delta_2)$	$\frac{5}{2}^{-}$, G_{2}^{-}	$\frac{1}{2}_{u}/\frac{5}{2}_{u}$, G_{1u}		
Table: ΓD Dirac structure.					

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II

r = 0: Regge trajectories

 $Q\bar{q}q\bar{Q}$ and QQq

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II

r > 0: overview

Gunnar Bali (Regensburg)

 $Q\bar{q}q\overline{Q}$ and QQq

The degeneracy problem understood

 $Q\bar{q}q\bar{Q}$ and QQq

Red, green and blue crosses are QQq potentials.

Orange triangles are the factorization $m_{\overline{Q}q} + \frac{1}{2}V_{Q\overline{Q}}(r)$.

0.6

₩

¥

 $0.7 \, [fm]$

÷

🔺 🔺

9 r

8

 $\overline{7}$

[GeV]

3.75

3.5

3.25

2**.**75 2**.**5

2.25

1.75

1.5

1.25

m

 $\mathbf{2}$

3

Pink and light line are ground state points, shifted by the respective staticlight energy splittings.

The red band is the Nambu-Goto expectation for the first gluonic hybrid excitation: $E_2 - E_0 + GS$, where $E_n(r) = \sigma_{GS} r \sqrt{1 + \left(2n - \frac{d-2}{12}\right)\frac{\pi}{\sigma r^2}}$.

The groundstate potentials in comparison

Gunnar Bali (Regensburg)

 $Q\bar{q}q\bar{Q}$ and QQq

Outline	Lattice QCD	Threshold charmonia	Outlook I	QQq potentials	Outlook II
Outloc	ok II				

- The HQET factorization applies to $r \ll \Lambda^{-1}$.
- The scale where this factorization breaks down depends on the state.
- Light quark excitations are more important than gluonic ones.
- Not shown: correlators with the light quark in the centre mostly have a better ground state overlaps → no evidence for Qq diquark formation.
- Ongoing: decreasing the light quark mass to increase Λ^{-1} .
- See also the work on the ground state *QQq* potential by Yamamoto and Suganuma 08.