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# Lattice QCD is a quantitative non-perturbative formulation of QCD

based only on first principles.

# Precise lattice calculations : for stable (or almost stable) hadron

masses and amplitudes with no more then one initial (final) state hadron.

* Unquenched calculations: include vacuum polarization effects in

a realistic way (Nf = 2 + 1).

* Control over systematic errors: including chiral extrapolation,

discretization (continuum limit), renormalization, finite volume ...

# Precise lattice studies of cc̄ and bc̄(s) systems:

* Provide stringent tests of lattice techniques and formulations,

and of our understanding of strong interactions.
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# Using the same values for mu,d,

ms, mc and mb

# Lattice FNAL/HPQCD predictions:

* mlat
Bc

= (6304± 12+18
−0 )MeV mexp.

Bc
= (6277± 6)MeV

*
(
mΥ −mηb

)lat
= (61± 14)MeV

(
mΥ −mηb

)exp.
= (68.5± 6.9)MeV
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2.1. Effective theories: NRQCD

# Heavy quark is non-relativistic in bound states

→ mba is not an important dynamical scale
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relativistic and

discretization

corrections

* Spin-independent terms to order v4b and leading spin-dependent

terms with discretization errors through a2

∗ ci fixed pert. or non-pert. matching to QCD



2.2. Charm quarks

# Charm quark is in between the heavy and light mass regimes

* Heavy quark effective theories do not give accurate results.

* Relativistic descriptions: Maintain cut-off effects under control

requires

** Improved actions and currents.

** Fine enough lattices



2.3. Staggered fermions: HISQ action

E. Follana et al, HPQCD coll., Phys.Rev.D75:054502 (2007)

• Highly improved staggered action (relativistic).

• Much improved control of discretization errors.

* No tree level a2 errors (Asqtad). Highly reduce O(a2αs) errors

(an order of magnitude)

* No tree-level O((am)4) at first order in the quark velocity v/c

→ accurate results for charm quarks (can use Hisq for

a ≤ 0.15 fm)
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* Relativistic bottom (amb < 1) possible if a < 0.04 fm lattices

are generated (current values a ≥ 0.045 fm)



2.3. Staggered fermions: HISQ action

E. Follana et al, HPQCD coll., Phys.Rev.D75:054502 (2007)

• Testing relativistic action for masses heavier than charm.

* Relativistic bottom (amb < 1) possible if a < 0.04 fm lattices

are generated (current values a ≥ 0.045 fm)

* Current status: Simulations at masses mc ≤ mh < mb and several

lattice spacings → fit heavy quark mass dependence (HQET)

including a corrections

** Comparison of extrapolated results with those using NRQCD

and experiment
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# Unquenched simulations with Nf = 2 + 1 MILC configurations.

* Sea quarks: Staggered Asqtad

# Charm (valence) quarks: Staggered Hisq
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4. B −meson states

No free parameters

The same parameters can be used for heavy-heavy, light-light and

heavy-light states → important cross-checks

Υ 2S − 1S splitting, mDs −mηc , fηs , → a−1

V hh(r), mηs

mΥ,mηb → mb

mηc → mc

mπ → mu/d

mK → ms
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(bottom described with NRQCD, light and charm with Hisq)

# Energies of the ground state (E1) and excited states can be
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Mbb̄ = (3MΥ + Mηb
)/4, Mcc̄ = (3MΨ + Mηc

)/4,
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Shift proportional to the b content of the meson → take differences
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* Two methods used (differences enable high accuracy)

hh method MBc =
(
EBc −

1
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(Ebb + Ecc)

)
latt

+ 1
2

(
Mbb +Mcc

)
hl method MBc =

(
EBc − (EBs + EDs )

)
latt

+
(
MBs +MDs

)
with Ebb̄(cc̄) and Mbb̄(cc̄) the spin-averaged lattice energies and

experimental masses of bb̄(cc̄) states respectively.

Mbb̄ = (3MΥ + Mηb
)/4, Mcc̄ = (3MΨ + Mηc

)/4,

* Differences reduce the sensitivity to a (needed to convert lattice

results to physical units)



4.1 Pseudoscalar B −mesons: Bs and Bc

(bottom described with NRQCD, light and charm with Hisq)

Eric Gregory et al. HPQCD collaboration

preliminary results for mBs
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4.1 Pseudoscalar B −mesons: Bs and Bc

(light, charm, and bottom described with Hisq)

hh method for mBs
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splittings E.B. Gregory et at, Phys.Rev.Lett.104:022001(2010)

(bottom described with NRQCD, light and charm with Hisq)

# B∗c not yet seen experimentally.

# Correct the NRQCD energy shift by taking the difference MBc −MB∗
c
.

# Problem: Hyperfine pseudoscalar-vector splitting generated by

NRQCD term

−c4
~σ · ~B
2mQ

* We use c4 tree-level value

→ radiative corrections uncertainty O(αs) ∼ 20%

# Solution: Take the ratio of Bc and Bs splittings → uncertainty cancel.
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= 6.330(7)(2)(6) GeV

# MB∗
c
−MBc not very different from MB∗

s
−MBs . Potential models

generally find much larger differences



4.2 B∗c mass: Hyperfine pseudoscalar-vector

splittings E.B. Gregory et at, Phys.Rev.Lett.104:022001(2010)

(light, charm, and bottom described with Hisq)

Comparison NRQCD-Hisq, Hisq-Hisq and potential models
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# Successful lattice predictions of mBc and mηb .

# Highly improved actions (Hisq) allow us to treat charm relativistically.

* Prediction for mB∗
c

= 6.330(7)(2)(6) GeV

* Very good agreement with experiment for charmonium ψ, ηc ground

states as well as orbital and radial excitations. Soon, update of

charmonium hyperfine splitting with an error of ' 3.5MeV

# Highly improved actions (Hisq) will allow us to treat bottom relat.

* Preliminary results for B-meson masses and decay constants

with mh < mb and extrapolation (HQET) to the physical mb agree

well with experiment and NRQCD −Hisq results

* Eliminate the errors associated to higher terms in NRQCD/HQET

descriptions and (in some cases) renormalization

→ very promising for achieving high accuracy results



5. Conclusions and outlook

# Studies of spectrum provide tests of lattice formulations, techniques,

and error analyses, and accurate methods to fix lattice parameters

→ increase confidence in calculations of other phenomenologically

important quantities (decay constants, form factors, ...)



×



Quenched approximation : neglect vacuum polarization effects

→ uncontrolled and irreducible errors×
Nf = 0 Nf = 2 + 1

 0.9  1  1.1

Quenched

 0.9  1  1.1

with sea quarks

Υ(3S-1S)

Υ(1P-1S)
Υ(2P-1S)

Υ(1D-1S)

2mBs,av
-mΥ

ψ(1P-1S)

mψ - mηc

mD*
s
 - mDs

mD

mDs

mΩ
mN

fK

fπ

mBc

Experimental quantities are quite well reproduced by lattice

when including realistic sea quark effects
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Heavy quark formalisms for D mesons

# Fermilab action: Relativistic clover action with Fermilab

(HQET) interpretation

* Smooth interpolation between static limit and light quarks

# HISQ (Highly improved staggered action ): No tree level a2 errors

(Asqtad) + reduction of O(a2αs) and O((amQ)4) errors (by a

factor of ∼ 3)

→ Very precise results for charm physics: charmonium and D

# Twisted mass QCD at maximal twist (tuning a single parameter)

* Meson masses and decay constants O(a) improved.

* No need for renormalization for decay constants (PCAC)

* Mass renormalization multiplicative and calculated NP

# O(a) improved Wilson: improvement in action and currents.
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* Eliminate finite size effects through SS functions:
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O(L,mh)

for s > 1 and mh < mb

** Assume mild dependence of finite size effects on high energy scale

* Extrapolate SS functions in 1/mh to mb
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# Fermilab action: Relativistic clover action with Fermilab (HQET)

interpretation

* Smooth interpolation between static limit and light quarks

# NRQCD: Discretized version of NR effective action improved through

O(1/M2), O(a2) and leading relativistic O(1/M3)

# Extrapolation method:

Relativistic simulations

at masses ∼ mc

→
fit functions determined

by HQET

bottom

# Step Scaling Method (HQET):

* Simulate b in a small volume: calculate an observable O(L0, mb).

* Eliminate finite size effects through SS functions:

** σ(L, s, mh) = O(sL,mh)
O(L,mh)

for s > 1 and mh < mb

** Assume mild dependence of finite size effects on high energy scale

* Extrapolate SS functions in 1/mh to mb

# HQET: static + 1/M


