B-mesons and charmonium masses from lattice QCD

Elvira Gámiz for HPQCD collaboration

Fermi National Accelerator Laboratory

Batavia, Illinois

International Workshop on Heavy Quarkonium

· Fermilab, May 18 (2010) ·

1. Introduction: Lattice QCD

Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.

1. Introduction: Lattice QCD

- # Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.
- # Precise lattice calculations : for stable (or almost stable) hadron masses and amplitudes with no more then one initial (final) state hadron.
 - * Unquenched calculations: include vacuum polarization effects in a realistic way $(N_f = 2 + 1)$.
 - * Control over systematic errors: including chiral extrapolation, discretization (continuum limit), renormalization, finite volume ...

1. Introduction: Lattice QCD

- # Lattice QCD is a quantitative non-perturbative formulation of QCD based only on first principles.
- # Precise lattice calculations : for stable (or almost stable) hadron masses and amplitudes with no more then one initial (final) state hadron.
 - * Unquenched calculations: include vacuum polarization effects in a realistic way $(N_f = 2 + 1)$.
 - * Control over systematic errors: including chiral extrapolation, discretization (continuum limit), renormalization, finite volume ...

Precise lattice studies of $c\bar{c}$ and $b\bar{c}(s)$ systems:

* Provide stringent tests of lattice techniques and formulations, and of our understanding of strong interactions.

Spectrum of gold-platted mesons from HPQCD

The gold-plated meson spectrum from lattice QCD - HPQCD collaboration 2009

E. B. Gregory et al. [HPQCD] PRL.104:022001(2010)

Spectrum of gold-platted mesons from HPQCD

E. B. Gregory et al. [HPQCD] PRL.104:022001(2010)

Lattice **FNAL/HPQCD** predictions:

*
$$m_{B_c}^{lat} = (6304 \pm 12^{+18}_{-0})MeV$$
 $m_{B_c}^{exp.} = (6277 \pm 6)MeV$
* $(m_{\Upsilon} - m_{\eta_b})^{lat} = (61 \pm 14)MeV$ $(m_{\Upsilon} - m_{\eta_b})^{exp.} = (68.5 \pm 6.9)MeV$

2. Lattice description of heavy quarks

Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.

2. Lattice description of heavy quarks

Problem is discretization errors ($\simeq m_Q a, (m_Q a)^2, \cdots$) if $m_Q a$ is large.

2.1. Effective theories: NRQCD

Heavy quark is non-relativistic in bound states

 $\rightarrow m_b a$ is not an important dynamical scale

2.1. Effective theories: NRQCD

Non-relativistic expansion of the Dirac lagrangian.

* Improved by adding higher order in $v/c \ll 1$.

2.1. Effective theories: NRQCD

Non-relativistic expansion of the Dirac lagrangian.

* Improved by adding higher order in $v/c \ll 1$.

On lattice, hamiltonian is (improved through $\mathcal{O}(1/M^2)$, $\mathcal{O}(a^2)$):

 $aH_{0} = -\frac{\Delta^{(2)}}{2(aM_{0})} \text{ non - relat. kinetic energy oper.}$ $a\delta H = -c_{1} \frac{(\Delta^{(2)})^{2}}{8(aM_{0})^{3}} + c_{2} \frac{i}{8(aM_{0})^{2}} \left(\nabla \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \nabla\right)$ $-c_{3} \frac{1}{8(aM_{0})^{2}} \boldsymbol{\sigma} \cdot (\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla})$ $-c_{3} \frac{1}{8(aM_{0})^{2}} \boldsymbol{\sigma} \cdot (\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla})$ $-c_{4} \frac{1}{2(aM_{0})} \boldsymbol{\sigma} \cdot \tilde{\mathbf{B}} + c_{5} \frac{\Delta^{(4)}}{24(aM_{0})} - c_{6} \frac{(\Delta^{(2)})^{2}}{16n(aM_{0})^{2}} + \cdots$

* Spin-independent terms to order v_b^4 and leading spin-dependent terms with discretization errors through a^2

2.1. Effective theories: NRQCD

Non-relativistic expansion of the Dirac lagrangian.

* Improved by adding higher order in $v/c \ll 1$.

On lattice, hamiltonian is (improved through $\mathcal{O}(1/M^2)$, $\mathcal{O}(a^2)$):

 $aH_{0} = -\frac{\Delta^{(2)}}{2(aM_{0})} \text{ non - relat. kinetic energy oper.}$ $a\delta H = -c_{1} \frac{(\Delta^{(2)})^{2}}{8(aM_{0})^{3}} + c_{2} \frac{i}{8(aM_{0})^{2}} \left(\nabla \cdot \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \cdot \nabla\right)$ $-c_{3} \frac{1}{8(aM_{0})^{2}} \boldsymbol{\sigma} \cdot (\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla})$ $-c_{3} \frac{1}{8(aM_{0})^{2}} \boldsymbol{\sigma} \cdot (\tilde{\nabla} \times \tilde{\mathbf{E}} - \tilde{\mathbf{E}} \times \tilde{\nabla})$ $-c_{4} \frac{1}{2(aM_{0})} \boldsymbol{\sigma} \cdot \tilde{\mathbf{B}} + c_{5} \frac{\Delta^{(4)}}{24(aM_{0})} - c_{6} \frac{(\Delta^{(2)})^{2}}{16n(aM_{0})^{2}} + \cdots$

- * Spin-independent terms to order v_b^4 and leading spin-dependent terms with discretization errors through a^2
 - $* c_i$ fixed pert. or non-pert. matching to QCD

2.2. Charm quarks

- # Charm quark is in between the heavy and light mass regimes
 - * Heavy quark effective theories do not give accurate results.
 - * Relativistic descriptions: Maintain cut-off effects under control requires
 - ****** Improved actions and currents.
 - ****** Fine enough lattices

2.3. Staggered fermions: HISQ action

E. Follana et al, HPQCD coll., Phys.Rev.D75:054502 (2007)

- Highly improved staggered action (relativistic).
- Much improved control of discretization errors.
 - * No tree level a^2 errors (Asqtad). Highly reduce $\mathcal{O}(a^2 \alpha_s)$ errors (an order of magnitude)
 - * No tree-level $\mathcal{O}((am)^4)$ at first order in the quark velocity v/c
 - \rightarrow accurate results for charm quarks (can use Hisq for $a \leq 0.15 \ fm$)

2.3. Staggered fermions: HISQ action

E. Follana et al, HPQCD coll., Phys.Rev.D75:054502 (2007)

- Testing relativistic action for masses heavier than charm.
 - * Relativistic bottom ($am_b < 1$) possible if $a < 0.04 \ fm$ lattices are generated (current values $a \ge 0.045 \ fm$)

2.3. Staggered fermions: HISQ action

E. Follana et al, HPQCD coll., Phys.Rev.D75:054502 (2007)

- Testing relativistic action for masses heavier than charm.
 - * Relativistic bottom ($am_b < 1$) possible if $a < 0.04 \ fm$ lattices are generated (current values $a \ge 0.045 \ fm$)
 - * Current status: Simulations at masses $m_c \le m_h < m_b$ and several lattice spacings \rightarrow fit heavy quark mass dependence (HQET) including *a* corrections
 - ** Comparison of extrapolated results with those using NRQCD and experiment

3. Charmonium states

Unquenched simulations with $N_f = 2 + 1$ MILC configurations.

* Sea quarks: Staggered Asqtad

Charm (valence) quarks: Staggered Hisq

3. Charmonium states

Unquenched simulations with $N_f = 2 + 1$ MILC configurations.

* Sea quarks: Staggered Asqtad

Charm (valence) quarks: Staggered Hisq

E. Follana et al, Phys.Rev.D75:054502 (2007)

- * One lattice spacing $a = 0.09 \ fm$.
- * No optimization of higher order states yet → needs more statist.

3. Charmonium states

Unquenched simulations with $N_f = 2 + 1$ MILC configurations.

* Sea quarks: Staggered Asqtad

Charm (valence) quarks: Staggered Hisq

- * One lattice spacing $a = 0.09 \ fm$.
- * No optimization of higher order states yet → needs more statist.

* Band: final result after including $c - \bar{c}$ annihilation and em effects (error $\simeq 3.5 \text{MeV}$)

4. B - meson states

No free parameters

The same parameters can be used for heavy-heavy, light-light and heavy-light states \rightarrow important cross-checks

$$\begin{split} \Upsilon \quad 2S - 1S \text{ splitting}, \ m_{D_s} - m_{\eta_c}, \ f_{\eta_s}, & \to \quad a^{-1} \\ V^{hh}(r), \ m_{\eta_s} \\ m_{\Upsilon}, \ m_{\eta_b} & \to \quad m_b \\ m_{\eta_c} & \to \quad m_c \\ m_{\pi} & \to \quad m_{u/d} \\ m_K & \to \quad m_s \end{split}$$

(bottom described with NRQCD, light and charm with Hisq)

Energies of the ground state (E_1) and excited states can be extracted from 2-point correlation functions.

(bottom described with NRQCD, light and charm with Hisq)

- # Energies of the ground state (E_1) and excited states can be extracted from 2-point correlation functions.
- # NRQCD action has not mass term \rightarrow unknown energy shift ($E_1 \neq M_B$)

Shift proportional to the *b* content of the meson \rightarrow take differences of lattice energies to get physical mass differences

(bottom described with NRQCD, light and charm with Hisq)

- # Energies of the ground state (E_1) and excited states can be extracted from 2-point correlation functions.
- # NRQCD action has not mass term \rightarrow unknown energy shift ($E_1 \neq M_B$)

Shift proportional to the *b* content of the meson \rightarrow take differences of lattice energies to get physical mass differences

* Two methods used (differences enable high accuracy) hh method $M_{B_c} = \left(E_{B_c} - \frac{1}{2}(E_{b\overline{b}} + E_{c\overline{c}})\right)_{\text{latt}} + \frac{1}{2}\left(M_{b\overline{b}} + M_{c\overline{c}}\right)$ hl method $M_{B_c} = \left(E_{B_c} - (E_{B_s} + E_{D_s})\right)_{\text{latt}} + \left(M_{B_s} + M_{D_s}\right)$

with $E_{b\bar{b}(c\bar{c})}$ and $M_{b\bar{b}(c\bar{c})}$ the spin-averaged lattice energies and experimental masses of $b\bar{b}(c\bar{c})$ states respectively.

 $M_{bar{b}} = (3M_{\Upsilon} + M_{\eta_b})/4$, $M_{car{c}} = (3M_{\Psi} + M_{\eta_c})/4$,

(bottom described with NRQCD, light and charm with Hisq)

- # Energies of the ground state (E_1) and excited states can be extracted from 2-point correlation functions.
- # NRQCD action has not mass term \rightarrow unknown energy shift ($E_1 \neq M_B$)

Shift proportional to the *b* content of the meson \rightarrow take differences of lattice energies to get physical mass differences

* Two methods used (differences enable high accuracy) hh method $M_{B_c} = \left(E_{B_c} - \frac{1}{2}(E_{b\overline{b}} + E_{c\overline{c}})\right)_{latt} + \frac{1}{2}\left(M_{b\overline{b}} + M_{c\overline{c}}\right)$ hl method $M_{B_c} = \left(E_{B_c} - (E_{B_s} + E_{D_s})\right)_{latt} + \left(M_{B_s} + M_{D_s}\right)$

with $E_{b\bar{b}(c\bar{c})}$ and $M_{b\bar{b}(c\bar{c})}$ the spin-averaged lattice energies and experimental masses of $b\bar{b}(c\bar{c})$ states respectively.

 $M_{b\bar{b}} = (3M_{\Upsilon} + M_{\eta_b})/4$, $M_{c\bar{c}} = (3M_{\Psi} + M_{\eta_c})/4$,

* Differences reduce the sensitivity to *a* (needed to convert lattice results to physical units)

(bottom described with NRQCD, light and charm with Hisq)

Eric Gregory et al. HPQCD collaboration

* Results for m_{B_c} from hh and hl methods agree \rightarrow consistent description of hh and hl systems.

4.1 Pseudoscalar B - mesons: B_s and B_c (light, charm, and bottom described with Hisq)

* Use five(four) values of a: (0.15 fm), 0.12 fm, 0.09 fm, 0.06 fm and 0.045 fm from left to right.

- * Red circles: Interp./extrap. values at the physical M_{η_b} and M_{η_c} .
- * Apricot points: Experimental values (without annihilation and em effects)
- * Dashed lines: Fits to functions of M_{η_h} from HQET.

(bottom described with NRQCD, light and charm with Hisq)

B_c^* not yet seen experimentally.

(bottom described with NRQCD, light and charm with Hisq)

B_c^* not yet seen experimentally.

Correct the NRQCD energy shift by taking the difference $M_{B_c} - M_{B_c^*}$.

Problem: Hyperfine pseudoscalar-vector splitting generated by NRQCD term

$$-\frac{\vec{c}_4}{2m_Q}\frac{\vec{\sigma}\cdot\vec{B}}{2m_Q}$$

* We use c_4 tree-level value

 \rightarrow radiative corrections uncertainty $\mathcal{O}(\alpha_s) \sim 20\%$

(bottom described with NRQCD, light and charm with Hisq)

B_c^* not yet seen experimentally.

Correct the NRQCD energy shift by taking the difference $M_{B_c} - M_{B_c^*}$.

Problem: Hyperfine pseudoscalar-vector splitting generated by NRQCD term

$$-\frac{\vec{c_4}}{2m_Q}$$

* We use c_4 tree-level value

 \rightarrow radiative corrections uncertainty $\mathcal{O}(\alpha_s) \sim 20\%$

Solution: Take the ratio of B_c and B_s splittings \rightarrow uncertainty cancel.

(bottom described with NRQCD, light and charm with Hisq)

* Simulations at three different values of the lattice spacing.

$$R_c = \frac{m_{B_c^*} - m_{B_c}}{m_{B_s^*} - m_{B_s}}$$
$$R_l = \frac{m_B - m_B}{m_{B_s^*} - m_{B_s}}$$

After extrapolation to the continuum and physical masses and using experimental (PDG) value of $B_s^* - B_s$ and B_c : $m_{B_c^*} = 6.330(7)(2)(6)$ GeV

(bottom described with NRQCD, light and charm with Hisq)

* Simulations at three different values of the lattice spacing.

$$R_c = \frac{m_{B_c^*} - m_{B_c}}{m_{B_s^*} - m_{B_s}}$$
$$R_l = \frac{m_B^* - m_B}{m_{B_s^*} - m_{B_s}}$$

After extrapolation to the continuum and physical masses and using experimental (PDG) value of $B_s^* - B_s$ and B_c : $m_{B_c^*} = 6.330(7)(2)(6)$ GeV

$M_{B_c^*} - M_{B_c}$ not very different from $M_{B_s^*} - M_{B_s}$. Potential models generally find much larger differences

(light, charm, and bottom described with Hisq)

Comparison NRQCD-Hisq, Hisq-Hisq and potential models

* $h_{c(s)}$ is a meson with quark content $h\bar{c}(\bar{s})$, where $m_c \leq m_h < m_b$

- * Hisq-Hisq results at one a
- * Need extrapolation to m_{η_b}
- * Potential models results from
 Eichten and Quigg, PRD49:5845,1994

Successful lattice predictions of m_{B_c} and m_{η_b} .

Successful lattice predictions of m_{B_c} and m_{η_b} .

Highly improved actions (Hisq) allow us to treat charm relativistically.

- * Prediction for $m_{B_c^*} = 6.330(7)(2)(6) \text{ GeV}$
- * Very good agreement with experiment for charmonium ψ, η_c ground states as well as orbital and radial excitations. Soon, update of charmonium hyperfine splitting with an error of $\simeq 3.5 \text{MeV}$

Successful lattice predictions of m_{B_c} and m_{η_b} .

Highly improved actions (Hisq) allow us to treat charm relativistically.

- * Prediction for $m_{B_c^*} = 6.330(7)(2)(6)$ GeV
- * Very good agreement with experiment for charmonium ψ, η_c ground states as well as orbital and radial excitations. Soon, update of charmonium hyperfine splitting with an error of $\simeq 3.5 \text{MeV}$
- # Highly improved actions (Hisq) will allow us to treat bottom relat.
 - * Preliminary results for B-meson masses and decay constants with $m_h < m_b$ and extrapolation (HQET) to the physical m_b agree well with experiment and NRQCD - Hisq results
 - * Eliminate the errors associated to higher terms in NRQCD/HQET descriptions and (in some cases) renormalization
 → very promising for achieving high accuracy results

Studies of spectrum provide tests of lattice formulations, techniques, and error analyses, and accurate methods to fix lattice parameters → increase confidence in calculations of other phenomenologically important quantities (decay constants, form factors, ...)

Quenched approximation : neglect vacuum polarization effects

 \rightarrow uncontrolled and irreducible errors

Experimental quantities are quite well reproduced by lattice when including realistic sea quark effects

- # Fermilab action: Relativistic clover action with Fermilab (HQET) interpretation
 - * Smooth interpolation between static limit and light quarks

- # Fermilab action: Relativistic clover action with Fermilab (HQET) interpretation
 - * Smooth interpolation between static limit and light quarks
- **# HISQ** (Highly improved staggered action): No tree level a^2 errors (Asqtad) + reduction of $O(a^2\alpha_s)$ and $O((am_Q)^4)$ errors (by a factor of ~ 3)
 - \rightarrow Very precise results for charm physics: charmonium and D

- # Fermilab action: Relativistic clover action with Fermilab (HQET) interpretation
 - * Smooth interpolation between static limit and light quarks
- **# HISQ** (Highly improved staggered action): No tree level a^2 errors (Asqtad) + reduction of $O(a^2\alpha_s)$ and $O((am_Q)^4)$ errors (by a factor of ~ 3)
 - \rightarrow Very precise results for charm physics: charmonium and D
- **# Twisted mass QCD** at maximal twist (tuning a single parameter)
 - * Meson masses and decay constants $\mathcal{O}(a)$ improved.
 - * No need for renormalization for decay constants (PCAC)
 - * Mass renormalization multiplicative and calculated NP

- # Fermilab action: Relativistic clover action with Fermilab (HQET) interpretation
 - * Smooth interpolation between static limit and light quarks
- **# HISQ** (Highly improved staggered action): No tree level a^2 errors (Asqtad) + reduction of $\mathcal{O}(a^2\alpha_s)$ and $\mathcal{O}((am_Q)^4)$ errors (by a factor of ~ 3)
 - \rightarrow Very precise results for charm physics: charmonium and D
- **# Twisted mass QCD** at maximal twist (tuning a single parameter)
 - * Meson masses and decay constants $\mathcal{O}(a)$ improved.
 - * No need for renormalization for decay constants (PCAC)
 - * Mass renormalization multiplicative and calculated NP

$\mathcal{O}(a)$ improved Wilson: improvement in action and currents.

- # Fermilab action: Relativistic clover action with Fermilab (HQET)
 interpretation
 - * Smooth interpolation between static limit and light quarks

- # Fermilab action: Relativistic clover action with Fermilab (HQET)
 interpretation
 - * Smooth interpolation between static limit and light quarks
- # NRQCD: Discretized version of NR effective action improved through $\mathcal{O}(1/M^2)$, $\mathcal{O}(a^2)$ and leading relativistic $\mathcal{O}(1/M^3)$

- # Fermilab action: Relativistic clover action with Fermilab (HQET)
 interpretation
 - * Smooth interpolation between static limit and light quarks
- # NRQCD: Discretized version of NR effective action improved through $\mathcal{O}(1/M^2)$, $\mathcal{O}(a^2)$ and leading relativistic $\mathcal{O}(1/M^3)$

- # Fermilab action: Relativistic clover action with Fermilab (HQET)
 interpretation
 - * Smooth interpolation between static limit and light quarks
- # NRQCD: Discretized version of NR effective action improved through $\mathcal{O}(1/M^2)$, $\mathcal{O}(a^2)$ and leading relativistic $\mathcal{O}(1/M^3)$

Step Scaling Method (HQET):

- * Simulate b in a small volume: calculate an observable $O(L_0, m_b)$.
- * Eliminate finite size effects through SS functions:

**
$$\sigma(L, s, m_h) = \frac{O(sL, m_h)}{O(L, m_h)}$$
 for $s > 1$ and $m_h < m_b$

** Assume mild dependence of finite size effects on high energy scale

```
* Extrapolate SS functions in 1/m_h to m_b
```

- # Fermilab action: Relativistic clover action with Fermilab (HQET)
 interpretation
 - * Smooth interpolation between static limit and light quarks
- # NRQCD: Discretized version of NR effective action improved through $\mathcal{O}(1/M^2)$, $\mathcal{O}(a^2)$ and leading relativistic $\mathcal{O}(1/M^3)$

Step Scaling Method (HQET):

- * Simulate b in a small volume: calculate an observable $O(L_0, m_b)$.
- * Eliminate finite size effects through SS functions:

**
$$\sigma(L, s, m_h) = \frac{O(sL, m_h)}{O(L, m_h)}$$
 for $s > 1$ and $m_h < m_b$

** Assume mild dependence of finite size effects on high energy scale

* Extrapolate SS functions in $1/m_h$ to m_b

HQET: static + 1/M