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# Lattice QCD is a quantitative non-perturbative formulation of QCD
based only on first principles.

#+ | Precise lattice calculations |. for stable (or almost stable) hadron
masses and amplitudes with no more then one initial (final) state hadron.

* Unquenched calculations: include vacuum polarization effects in
a realistic way (INy =2+ 1).

* Control over systematic errors: including chiral extrapolation,
discretization (continuum limit), renormalization, finite volume ...
# Precise lattice studies of cc and bc(s) systems:

* Provide stringent tests of lattice techniques and formulations,
and of our understanding of strong interactions.
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# Lattice FNAL/HPQCD predictions:
* mlgt = (6304 £ 121 %) MeV  mEP = (6277 £ 6)MeV

* (my —my, ) " = (61£14)MeV  (my —my, )P = (68.5 + 6.9)MeV
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* Spin-independent terms to order fugl and leading spin-dependent
terms with discretization errors through a?

x ¢; fixed pert. or non-pert. matching to QCD



2.2. Charm quarks

# Charm quark is in between the heavy and light mass regimes
* Heavy quark effective theories do not give accurate results.

* Relativistic descriptions: Maintain cut-off effects under control
requires

** Improved actions and currents.

** Fine enough lattices



2.3. Staggered fermions: HISQ action

e Highly improved staggered action (relativistic).
e Much improved control of discretization errors.

* No tree level a? errors (Asqgtad). Highly reduce O(a’as) errors
(an order of magnitude)

* No tree-level O((am)*) at first order in the quark velocity v/c

— accurate results for charm quarks (can use Hisqg for
a <0.15 fm)
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2.3. Staggered fermions: HISQ action

e Testing relativistic action for masses heavier than charm.

* Relativistic bottom (am; < 1) possible if a < 0.04 fm lattices
are generated (current values a > 0.045 fm)

* Current status: Simulations at masses m. < myj < my and several
lattice spacings — fit heavy quark mass dependence (HQET)
including a corrections

** Comparison of extrapolated results with those using NRQCD
and experiment



3. Charmonium states

# Unquenched simulations with Ny =2 + 1 configurations.
* Sea quarks: Staggered Asgtad

# Charm (valence) quarks: Staggered Hisq
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4. B — meson states

No free parameters

The same parameters can be used for heavy-heavy, 1light-light and

heavy-light states — | important cross-checks

T 25 —1Ssplitting, mp, — mqy., fn,, — a
th(r)v Mn
my, My, — My
myn. — Mec
mr — mu/d
mg — Ms
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# Energies of the ground state (£1) and excited states can be
extracted from 2-point correlation functions.

# NRQCD action has not mass term — unknown energy shift (Ey # Mp)

Shift proportional to the b content of the meson — take differences
of lattice energies to get physical mass differences

* Two methods used (differences enable high accuracy)
hhmethod Mp, = (Ep, — (B + Bec))  + 3 (Myp + Mec)
a

2
hlmethod Mp, = (Ep, — (EB, + Ep,)).. + (MB, + Mp,)

with gy and Mg ..y the spin-averaged lattice energies and
experimental masses of bb(cé) states respectively.

M,; = (3Mvy + M,,)/4,  M.: = (3Mg + M, )/4,

* Differences reduce the sensitivity to a (needed to convert lattice
results to physical units)



4.1 Pseudoscalar B — mesons: Bs and B,

(bottom described with NRQCD, light and charm with Hisq)

preliminary results for mp,

Eric Gregory et al. HPQCD collaboration

preliminary results for mp,
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* Results for mp, from hh and hl methods agree

— consistent description of hh and hl systems.



4.1 Pseudoscalar B — mesons: B; and B,

(light, charm, and bottom described with Hisq)

hh method for mp, hl method for mp,
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* Use five(four) values of a: (0.15 fm), 0.12 fm, 0.09 fm, 0.06 fm and
0.045 fm from left to right.

* Red circles: Interp./extrap. values at the physical M, and M, .
* Apricot points: Experimental values (without annihilation and em effects)

* Dashed lines: Fits to functions of M,, from HQET.
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4.2 B mass: Hyperfine pseudoscalar-vector
splittings

(bottom described with NRQCD, light and charm with Hisq)

# B! not yet seen experimentally.
# Correct the NRQCD energy shift by taking the difference Mp_A — Mpx.

# Problem: Hyperfine pseudoscalar-vector splitting generated by
NRQCD term
&-B
2mg

* We use c4 tree-level value
— radiative corrections uncertainty O(as) ~ 20%

# Solution: Take the ratio of B. and Bs splittings — uncertainty cancel.



4.2 B mass: Hyperfine pseudoscalar-vector
splittings

(bottom described with NRQCD, light and charm with Hisq)
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4.2 B mass: Hyperfine pseudoscalar-vector
splittings

(bottom described with NRQCD, light and charm with Hisq)

Results
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# After extrapolation to the continuum and physical masses and using

experimental value of By — Bs and B¢ | mpx = 6.330(7)(2)(6) GeV

# MB; — Mp, not very different from MB; — Mp_. Potential models
generally find much larger differences
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4.2 B mass: Hyperfine pseudoscalar-vector
splittings
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* Potential models results from
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# Successful lattice predictions of mp_, and my,, .

# Highly improved actions (Hisq) allow us to treat charm relativistically.

* Prediction for | mpx = 6.330(7)(2)(6) GeV

* Very good agreement with experiment for charmonium <, n. ground
states as well as orbital and radial excitations. Soon, update of
charmonium hyperfine splitting with an error of ~ 3.5MeV

# Highly improved actions (Hisqg) will allow us to treat bottom relat.

* Preliminary results for B-meson masses and decay constants
with mj < mp and extrapolation (HQET) to the physical m; agree
well with experiment and NRQCD — Hisq results

* Eliminate the errors associated to higher terms in NRQCD/HQET
descriptions and (in some cases) renormalization
— very promising for achieving high accuracy results



5. Conclusions and outlook

# Studies of spectrum provide tests of lattice formulations, techniques,
and error analyses, and accurate methods to fix lattice parameters
— increase confidence in calculations of other phenomenologically
important quantities (decay constants, form factors, ...)
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# Fermilab action: Relativistic clover action with Fermilab
(HQET) interpretation

* Smooth interpolation between static limit and light quarks

# HISQ (Highly improved staggered action ): No tree level a? errors
(Asqgtad) 4 reduction of O(a?as) and O((amg)?*) errors (by a
factor of ~ 3)

— Very precise results for charm physics: charmonium and D

# Twisted mass QCD at maximal twist (tuning a single parameter)

* Meson masses and decay constants O(a) improved.
* No need for renormalization for decay constants (PCACQC)
* Mass renormalization multiplicative and calculated NP

# O(a) improved Wilson: improvement in action and currents.
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Heavy quark formalisms for B mesons

# Fermilab action: Relativistic clover action with Fermilab (HQET)
interpretation

* Smooth interpolation between static limit and light quarks

# NRQCD: Discretized version of NR effective action improved through
O(1/M?), O(a?) and leading relativistic O(1/M?)

# Extrapolation method.: \
Relativistic simulations
fit functions determined bottom
at masses ~ m.,
by HQET

# Step Scaling Method (HQET):

* Simulate b in a small volume: calculate an observable O(Lg, my).

* Eliminate finite size effects through SS functions:

** o(L, s, mp) = %&Sf,ﬁﬁ) for s > 1 and m;,, < my

** Assume mild dependence of finite size effects on high energy scale

* Extrapolate SS functions in 1/mj to m,

# HQET: static + 1/M



