Evidence for $X(3872) \rightarrow J/\psi\omega$

Arafat Gabareen Mokhtar SLAC National Accelerator Laboratory On behalf of the *BABAR* Collaboration

Quarkonium Working Group workshop Fermilab, May 18-21, 2010

Introduction

- X(3872): first new charmonium-like state discovered at the B-factories by Belle in B \rightarrow XK, X \rightarrow J/ $\psi\pi^+\pi^-$
- Confirmation from: CDF, D0, & BABAR
- <u>So far</u>, the X is the only new charmonium-like state observed with more than one decay mode: $X \rightarrow J/\psi\gamma$, $X \rightarrow \psi(2S)\gamma$, and $X \rightarrow D^0\overline{D}^{0*}$ and $J/\psi\pi^+\pi^-$ (assuming different X, Y, Z states)
- The decay modes: $X \rightarrow J/\psi\gamma$, $X \rightarrow \psi(2S)\gamma \rightarrow C=+1$
- No charged partner for the X \rightarrow I=0
- J^P for the X was studied by Belle & CDF using $X \rightarrow J/\psi \pi^+ \pi^-$; CDF showed that couldn't distinguish between 1⁺ and 2⁻

Arafat G. Mokhtar (SLAC)

Introduction (cont.)

• In hep-ex/0505037, Belle reported an excess of events in $m_{3\pi}$ above 750 MeV/c² in the decay $B \rightarrow J/\psi 3\pi K$ for $|m_{J/\psi 3\pi}$ -3872|<16.5 MeV/c² and interpreted as $X \rightarrow J/\psi \omega$

• In *BABAR*, we search for the decay mode $X \rightarrow J/\psi \omega$ in the decays $B \rightarrow J/\psi \omega K$, $\omega \rightarrow \pi^+ \pi^- \pi^0$

Arafat G. Mokhtar (SLAC)

The method

• We use the same selection criteria used in the previous BABAR analysis (*PRL 101, 082001*), <u>except</u> that on the lower-mass limit of the ω signal region

• Fit m_{ES} in intervals of variable of interest to extract the B-related signal (after ΔE requirement)

• The data (signal yields) are corrected for efficiency and K^0 branching fractions to perform a simultaneous fit to the B⁺ and B⁰ distributions^{*} of m_{J/\psi\omega}

* The use of charge conjugate reactions is implied throughout

Criterion (GeV/c²) $0.7695 < m_{3\pi} < 0.7965 (B^+)$ Old $0.7605 < m_{3\pi} < 0.8055 (B^0)$ Analysis $0.7400 < m_{3\pi} < 0.7965 (B^+)$ New $0.7400 < m_{3\pi} < 0.8055 (B^0)$ Analysis

Arafat G. Mokhtar (SLAC)

Evidence for $X \rightarrow J/\psi \omega$

Arafat G. Mokhtar (SLAC)

$m_{J/\psi\omega}$ Dependence of:

• Efficiency:

► For B⁺ (B⁰), the efficiency increases (decreases) gradually from 6% (5%) close to $m_{J/\psi\omega}$ threshold to 7% (4%) at $m_{J/\psi\omega}$ ~4.8 GeV/c²

• Mass resolution:

The resolution changes gradually from 6.5 MeV/c² at 3.84 GeV/c², to 9 MeV/c² at 4.8 GeV/c²

$$B^{+} \ and \ B^{0} \ simultaneous \ Fit$$

$$\frac{dN^{+}}{dm_{J/\psi\omega}} = n_{x}^{+} Gauss + n_{y}^{+} BW(Y) + n_{bkg}^{+} BKG$$

$$\frac{dN^{0}}{dm_{J/\psi\omega}} = n_{x}^{0} Gauss + n_{y}^{0} BW(Y) + n_{bkg}^{0} BKG$$

$$\frac{dN^{+}}{dm_{J/\psi\omega}} = n_{x}^{+} Gauss + n_{y}^{+} BW(Y) + n_{bkg}^{+} BKG$$

$$\frac{dN^{0}}{dm_{J/\psi\omega}} = R_{x} n_{x}^{+} Gauss + R_{y} n_{y}^{+} BW(Y) + R_{bkg} n_{bkg}^{+} BKG$$
Where
Gauss : Gaussian function for the X(3872)
BW(Y): Breit-Wigner function for the Y(3940) × phase space
BKG: phase-space × Gaussian function × m_{J/\psi\omega}
There are 11 parameters in the fits:
$$n_{x}, n_{y}, n_{bkg}, R_{x}, R_{y}, R_{bkg}, m_{x}, m_{y}, \Gamma_{y}, \mu_{bkg}, \sigma_{bkg}$$

$$Mathar (SLAC)$$

$$Evidence for X-J/\psi\omega$$

Fit Results		
Fit Parameter	Value <u>BABAR</u> <u>Preliminar</u>	
$m_X(GeV/c^2)$	$3873.0_{-1.6}^{+1.8}$ (stat) ± 1.3 (syst)	
$m_{\rm Y}({\rm GeV/c^2})$	$3919.1_{-3.4}^{+3.8}$ (stat) ± 2.0 (syst)	
$\Gamma_{\rm Y}({ m MeV})$	$31_{-8}^{+10}(\text{stat}) \pm 5(\text{syst})$	
Gaussian μ (GeV/c ²)	4435_{-30}^{+35} (stat)	
Gaussian σ (GeV/c ²)	356_{-38}^{+35} (stat)	
N_{X}^{+} (N_{X}^{0})	21 ± 7 (6 ±3 (stat))	
N_{Y}^{+} (N_{Y}^{0})	$108_{-23}^{+25}(\text{stat}) (19\pm8(\text{stat}))$	
N^+_{BKG} (N^0_{BKG})	$992 \pm 46(stat) (155 \pm 18(stat))$	
$R_{X} = N_{X}^{0} / N_{X}^{+}$	$1.0_{-0.6}^{+0.8}$ (stat)-0.2+0.1(syst)	
$R_{Y} = N_{Y}^{0} / N_{Y}^{+}$	$0.7_{-0.3}^{+0.4}$ (stat) ± 0.1 (syst)	
$R_{BKG} = N_{BKG}^0 / N_{BKG}^+$	0.7 ± 0.1 (stat) ± 0.1 (syst)	
Arafat G. Mokhtar (SLAC)	Evidence for $X \rightarrow J/\psi \omega$	

Uncorrected data in the X(3872) region

Daltiz-Plot weighting technique

Arafat G. Mokhtar (SLAC)

$B \rightarrow XK, X \rightarrow D^0 \overline{D}^{*0}$

• <u>Both</u> *BABAR* and Belle reported a shift in X(3872) mass in the decay mode $X \rightarrow D^0 \overline{D}^{*0} (\sim 3875)$ MeV/c²) (<u>No shift</u> in mass in the most recent analysis from Belle)

From *BABAR* and CDF: $\Delta m = 3.5 \pm 0.8 \text{ MeV/c}^2$

- The shift in D⁰D̄^{*0} mass may be due to one unit of orbital angular momentum, as for the ω
- An explanation of the shift for $X(3872) \rightarrow D^0 \overline{D}^{*0}$ can be found

in PRL 100, 062006 (2008)

Arafat G. Mokhtar (SLAC)

Systematic Uncertainties

- Embedding X(3872) signal in background Toys
- Tracking, PID, Neutral Efficiencies, and B-Counting
- Secondary Branching Fractions
- Uncertainties in the m_{ES} Shape parameter values
- Fitting the Uncorrected Data
- P-wave BW Vs. S-wave BW for the Y(3940)

Evidence for $X \rightarrow J/\psi \omega$

Branching Fractions

<u>BABAR</u> Preliminal	Process	Branching Fraction (BF)
	$B^+ \rightarrow XK^+, X \rightarrow J/\psi\omega$	[0.6±0.2(stat)±0.1(syst)]×10 ⁻⁵
	$B^0 \rightarrow XK^0, X \rightarrow J/\psi\omega$	$[0.6\pm0.3(stat)\pm0.1(syst)]\times10^{-5}$
	$B^+ \rightarrow YK^+, Y \rightarrow J/\psi\omega$	$[3.0_{-0.6}^{+0.7}(\text{stat})_{-0.3}^{+0.5}(\text{syst})] \times 10^{-5}$
	$B^0 \rightarrow YK^0, Y \rightarrow J/\psi\omega$	$[2.1\pm0.9(stat)\pm0.3(syst)]\times10^{-5}$
	$B^+ \rightarrow J/\psi \omega K^+$	$[3.2\pm0.1(stat)_{-0.3}+^{0.6}(syst)]\times10^{-4}$
	$B^0 \rightarrow J/\psi \omega K^0$	$[2.3\pm0.3(stat)\pm0.3(syst)]\times10^{-4}$
	$BR = \frac{BF(X \to J/\psi\omega)}{BF(X \to J/\psi\pi\pi)} = 0.7 \pm 0.3 (B^{+})$ $BR = \frac{BF(X \to J/\psi\omega)}{BF(X \to J/\psi\pi\pi)} = 1.7 \pm 1.3 (B^{0})$	
	B A B AR average:	0.8 \pm 0.3 Belle: 1.0 \pm 0.4 \pm 0.3
\sim		

Arafat G. Mokhtar (SLAC)

Summary

- We have <u>updated</u> our parameter values for the <u>Y(3940)</u>
- We report <u>evidence</u> for the decay mode $X(3872) \rightarrow J/\psi\omega$ (~3.5 σ signal size; 4.0 σ significance)
- The <u>*P-wave*</u> hypothesis for the X(3872) decay describes the data better than the S-wave
- \rightarrow X(3872) is more <u>likely</u> to have <u>J^P=2</u>⁻ than J^P=1⁺ state \rightarrow consistent with charmonium $\eta_{c2}(1D)$ interpretation

Evidence for $X \rightarrow J/\psi \omega$

21

Arafat G. Mokhtar (SLAC)

Selection Criteria

Selection Category	Criterion
$J/\psi \rightarrow \mu\mu \text{ mass } (\text{GeV}/\text{c}^2)$	3.06 <m<sub>µµ<3.14</m<sub>
$J/\psi \rightarrow ee mass (GeV/c^2)$	2.95 <m<sub>ee<3.14</m<sub>
π^0 mass (GeV/c ²)	0.115 <m<sub>yy<0.150</m<sub>
$\Delta E (GeV)$	$ \Delta E \le 0.015 (B^+); \Delta E \le 0.020 (B^0)$
B-helicity angle	$ \cos\theta_{\rm B} < 0.9$
Photon helicity angle $ heta\gamma$	$\cos\theta\gamma < 0.95$
$\psi(2S)$ veto (GeV/c ²)	3.661 <m<sub>J/ψππ<3.711</m<sub>
$m_{ES} (GeV/c^2)$	5.274 – 5.284 (signal box), >5.2 for fits
Arafat G. Mokhtar (SLAC)	Evidence for $X \rightarrow J/\psi \omega$

Comparison: Old and New Analysis

Evidence for $X \rightarrow J/\psi \omega$

Results-I: Fit Parameters		
<u>BABAR</u> <u>Preliminary</u> Fit Parameter	Value	
$m_X (GeV/c^2)$	$3873.0_{-1.6}^{+1.8}$ (stat) ± 1.3 (syst)	
$m_{Y} (GeV/c^2)$	$3919.1_{-3.4}^{+3.8}$ (stat) ± 2.0 (syst)	
$\Gamma_{\rm Y}$ (MeV)	31_{-8}^{+10} (stat) ±5(syst)	
Gaussian μ (GeV/c ²)	4435_{-30}^{+35} (stat)	
Gaussian σ (MeV)	356_{-38}^{+35} (stat)	
$\mathbf{N}_{\mathbf{X}}^{+}$ ($\mathbf{N}_{\mathbf{X}}^{0}$)	21 ± 7 (6 ±3 (stat))	
N_{Y}^{+} (N_{Y}^{0})	108_{-23}^{+25} (stat) (19±8(stat))	
N^+_{BKG} (N^0_{BKG})	$992 \pm 46(stat) (155 \pm 18(stat))$	
$R_X(B^0/B^+)$	$1.0_{-0.6}^{+0.8}(\text{stat})_{-0.2}^{+0.1}(\text{syst})$	
$R_{Y}(B^{0}/B^{+})$	$0.7_{-0.3}^{+0.4}$ (stat) ± 0.1 (syst)	
$R_{BKG} (B^0/B^+)$	0.7 ± 0.1 (stat) ± 0.1 (syst)	
Arafat G. Mokhtar (SLAC)	Evidence for $X \rightarrow J/\psi \omega$	