ATLAS expected measurements of Heavy Quarkonia in Pb+Pb collisions

Laurent Rosselet for the ATLAS Collaboration

International Workshop on Heavy Quarkonia, May 18-21 2010

The ATLAS detector

Central Pb-Pb collisions

Simulation: HIJING+GEANT
 dN_{ch}/dη|_{max}~ 3200 in central Pb-Pb
 c.f. 1200 from RHIC log extrapol.

Large bulk of low p_T particles is stopped in the first layer of the EM calorimeter (60% of energy)

Heavy quarkonia suppression

Original idea: color screening prevents various ψ , Υ , χ states to be formed when T \rightarrow T_c, the T_{trans} to QGP (color screening length < size of resonance)

Modification of the potential can be studied by a systematic measurement of heavy quarkonia states characterized by different binding energies and dissociation temperatures

~thermometer for the plasma

state	J/Ψ	χ _c	Ψ'	Y(1s)	χ _b	Y(2s)	Χ _b '	Y(3s)
Mass [GeV}	3.096	3.415	3.686	9.46	9.859	10.023	10.232	10.355
 B.E. [GeV]	0.64	0.2	0.05	1.1	0.67	0.54	0.31	0.2
 T _d /T _c	1.10	0.74	0.15	2.31	1.13	0.93	0.83	0.74

In fact: complex interplay between suppression and regeneration

Identical J/ ψ suppression at SPS and RHIC

Whereas medium is expected much denser and hotter at RHIC

Recent lattice data: J/ψ may survive to T twice $T_c =>$ only χ_c and Ψ ' states are dissolved at SPS and RHIC (a lack of feed-down contribution is observed)

Or: the recombination of cc compensates the extra suppression at RHIC

=> Crucial to go to higher energy (LHC) and to study the Y family

Upsilon reconstruction

Study the $\Upsilon \rightarrow \mu^+ \mu^-$ in a full simulation (GEANT+reconstruction)

Upsilon family	Y(1s)	Y(2s)	Y(3s)
Mass (GeV)	9.460	10.023	10.355
Binding energies (GeV)	1.1	0.54	0.2
Dissociation at the temperature	~2.3T _c	~0.9T _c	~0.7T _c

=>Important to separate $\Upsilon(1s)$ and $\Upsilon(2s)$

• $\mu^+ \mu^-$ mass resolution is 460 MeV at Y peak in the μ -spectrometer => uses combined info from μ -spectrometer and ID (Pixels + Strips, not yet from the Transition Radiation Tracker)

Strategies to measure quarkonia $\rightarrow \mu^+ \mu^-$

"Combined μ " = both μ 's are fully reconstructed in the μ -spectrometer & ID

"Combined+tag" = at least one μ is fully reconstructed, the other one may be partially reconstructed (tag) inside $|\eta| < 2$, to increase statistics without loss of mass resolution at low p_T .

Acceptance/efficiency for the Y

Full p_T coverage even if the p_T of the muons > 4 GeV

Mass resolution and acceptance for $\Upsilon \rightarrow \mu^+ \mu^-$

A compromise has to be found between acceptance and resolution to clearly separate Y states with maximum statistics (e.g. $|\eta| < 1.5$)

$\Upsilon \rightarrow \mu^+ \mu^-$ reconstruction

For the full η range, we expect 35K $\Upsilon \rightarrow \mu^+ \mu^-$ /month of 0.5 nb⁻¹

S/B ranges between 0.8 and 1

The Transition Radiation Tracker has not been considered for this study. When N_{ch} allows its use, the mass resolution can be improved. $J/\psi \rightarrow \mu^+\mu^-$

Acceptance/efficiency for the J/ψ :

The full p_T range of the J/ ψ is not accessible for $p_T^{\mu} > 3$ GeV, but is accessible for $p_T^{\mu} > 1.5$ GeV. Acceptance is forward and backward.

$J/\psi \rightarrow \mu^+\mu^-$ reconstruction

|η| <2.5, p_τ^μ >1.5 GeV up/24000 combined+tag J/ψ 2250 2000 p_τ^μ >1.5 combined µ p_τ^μ >3 1750 1500 Acceptance 0.785% 0.075% 1250 12000 xefficiency 0.051% 0.301% 1000 750 10000 Resolution 69 MeV 81 MeV 500 250 S/B 0.4 0.15 2.5 4.5 3 3.5 8000 0.5 0.2 6000 S/V S+B 74 158 66 111 4000 Rate/month 19000 192000 13000 74000 2000 w' We expect 19K to 192K J/ $\psi \rightarrow \mu^+ \mu^-$ 2.6 2.8 3.2 3.4 3 3.6 3.8 per month of 0.5 nb⁻¹ $\mu^+\mu^-$ invariant mass (GeV/c²)

A low p_T trigger is under study (worse backgr., better rate & significance).

Possibility of measuring χ_c decaying into J/ ψ .

Trigger/DAQ

For Pb-Pb collisions the interaction rate is 8 kHz, a factor of 10 smaller than LVL 1 bandwidth (75 kHz).

The event size for a central collision is ~ 5 Mbytes. Similar bandwidth to storage as pp implies ~ 50 Hz data recording.

 $\Upsilon \rightarrow e^+e^-, J/\psi \rightarrow e^+e^-$

The Transition Radiation Tracker can be used fully if N_{ch} is low enough partially in central Pb+Pb as tracker:

simplest strategy for central Pb+Pb: keep the 2 first time steps (out of 13) of the drift tubes

=> occupancy of 30% as in pp

=> 4 to 6 additional hits for track reconstruction

=> improves mass resolution, reduces fake tracks

as electron detector:

defines a road where to look for transition radiation to identify electrons

& get Υ and $J/\psi \rightarrow e^+e^-$ A rejection factor of 30-100 against π can be achieved for an electron efficiency of 50% if $dN_{ch}/d\eta|_{max} = 3200-1600$ (ATL-PHYS-PUB-2008-003)

Scenario under evaluation

First di-muon candidate in $\sqrt{s}=900$ GeV pp data?

Summary

Heavy quarkonia physics (suppression in dense matter) well accessible, capability to measure and separate Y and Y', to measure the J/ψ, ψ' using a specially developed µ tagging method, and to reduce background from π and K to an acceptable level.

>A study of Y, J/ ψ → e⁺e⁻ and of open heavy flavor production are under way.

First Pb beams expected at the LHC this November with half energy (√s_{NN}=2.76 TeV) and low luminosity (L_{max}=2x10²⁵ cm⁻² s⁻¹ <=>160 Hz instead of 10²⁷ nominal).

Extra slides:

Machine parameters for Hi running

208 Pb $^{82+} \Rightarrow \Leftarrow^{208}$ Pb $^{82+}$

Parameter	Nominal	Early (2010)
Beam energy/nucleon [TeV]	2.76	1.38
Peak luminosity [cm ⁻² s ⁻¹]	1027	10^{25} - 2 $ imes$ 10 ²⁵
No. of bunches	592	62
Bunch spacing [ns]	100	1350
Optics (β*) at IP1	0.55	3.0
No. of Pb ions per bunch	7 × 10 ⁷	7×10^7
Luminosity half-time (3 expts)[h]	3	5.5

J. Jowett QM2008, <u>http://arxiv.org/abs/0807.1397v1</u> (meeting 25.02.2010)

Heavy-ion physics programme

- Global variable meas
 dN/dη dE_T/dη el
 azimuthal distributions
- Jet measurement and
- Quarkonia suppressi
 - $\Upsilon J/\Psi \chi_c$
- p-A physics

2x4 modules of tungsten/quartz sandwich

Ultra-Peripheral Collisions (UPC)

Idea: take full advantage of the large calorimeter and μ -spectrometer

A Zero Degree Calorimeter is being added for trigger and UPC tagging

Atlas acceptance

Open heavy flavors

B and D meson decays appear at secondary vertices, determined by lifetime and Lorentz boost.

Impact parameter resolution for reconstructed tracks from central Pb+Pb collisions:

=> semi-leptonic B, D decays and B-chain channel can be identified by displaced vertices via μμ, possibly μe and ee

under study

