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Overview

Topics of this talk

The real-time static potential is introduced to generalize the QCD static
potential to a thermal setting. The physical signature of quarkonium in
an isotropic medium is discussed.

A calculation of the qq-potential in an anisotropic medium is presented.

It will be shown that the potential at fixed density of the medium is
insensitive to the degree of anisotropy.
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REAL-TIME STATIC POTENTIAL
Definition of the static qq̄-potential for thermal media and

properties in thermal equilibrium



Schwinger-Keldysh Formalism

t→ 0

t→∞
1 1

2 2

The real-time path integral is build along the Schwinger-Keldysh time contour
consisting of a Euclidean patch of length β, as well as a real-time patch C
running forward and returning in time.
A location on C is specified by a time t ∈ R and an index i ∈ 1, 2. The
correlator of two operators ϕ̂, ψ̂ takes a matrix form:

Real-Time Correlators

iG = i

„
G11 G12

G21 G22

«
=

„
〈T ψ̂(t′)ϕ̂(t)〉 −〈ϕ̂(t)ψ̂(t′)〉
〈ψ̂(t′)ϕ̂(t)〉 〈T̃ ψ̂(t′)ϕ̂(t)〉

«
Retarded, advanced and symmetric correlators are defined via:

R−1 ·G ·R =

„
0 GA
GR GS

«
where R =

1√
2

„
1 1
−1 1

«
.



Real Time Static Potential

[i∂t − V (t, r)]C21(t, r) = 0

Static Potential (Laine,Philipsen,Romatschke,Tassler,JHEP 0703 (2007) 054)

The static qq-potential in a thermal medium is obtained from a Schrödinger
equation for the qq-correlator C21 in the large time and static mass limit :

V (r) = lim
t→∞

V (t, r)

The quarkonium resonance is subsequently estimated by solving the
Schrödinger equation for physical quark masses:„

i∂t − [−4r

M
+ V (r) + 2M ]

«
C21 = 0, BC: C21(t = 0) ∼ δ(r)

Some recent uses: A. Dumitru, Y. Guo and M. Strickland, “The imaginary part of the static gluon propagator in an
anisotropic (viscous) QCD plasma,” arXiv:0903.4703 [hep-ph]; N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky,
“Static quark-antiquark pairs at finite temperature,” Phys. Rev. D 78 (2008); A. Beraudo, J. P. Blaizot and C. Ratti,
“Real and imaginary-time QQ̄ correlators in a thermal medium,” Nucl. Phys. A 806 (2008) ; M. A. Escobedo and
J. Soto, “Non-relativistic bound states at finite temperature (I): the hydrogen atom,” arXiv:0804.069 ; Y. Burnier,
M. Laine and M. Vepsalainen, “Heavy quarkonium in any channel in resummed hot QCD,” JHEP 0801 (2008)



Expansion of the Wilson Loop

1
N

Tr =1+ + + +. . .

Diagrams contributing to the Wilson-Loop

The Real-Time static potential to O(g2)

V (r) = g2CF

∫
d3k

(2π)3
(1− cos k · r)G̃00

11(ω = 0,k)

Here G̃00
11 is the longitudinal component of the time ordered gluon propagator

which can be decomposed as: G̃11 = Re G̃R + 1
2
G̃S .

In the special case of thermal equilibrium the potential takes the form:

V (r) = −g
2CF
4π

[mD +
exp(−mDr)

r
]| {z }

Re(V): Retarded contribution

−i g
2TCF
2π

φ(mDr)| {z }
Im(V): Symmetric contribution

where φ(x) = 2
R∞

0
dzz

(z2+1)2

h
1− sin(zx)

zx

i
.

Note: The potential has an imaginary part originating from Landau damping.
The real part is the usual Debye screened potential.



Imaginary Part from Classical Simulations

Magnetic energy density in classical Yang-Mills theory with quasiparticles.

Classical Approximation of Thermal Field Theories

Bare symmetric propagator GS for a bosonic field with coupling g2 ∼ ~:

GS ∼ nB(ω) +
1

2
=

T

~ω
+

1

12

~ω
T

+ . . .

The classical limit ~→ 0 resums the IR contributions of all diagrams with a
maximal number of symmetric insertions. They capture the long range
physics of a plasma at large T.

Measurement: The existence of an imaginary part of the potential is
confirmed and a significant non-perturbative IR enhancement is observed.


classical.mp4
Media File (video/mp4)



Physical signatures
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Figure 5: The physical dilepton production rate, Eq. (2.3), from charmonium (left) and

bottomonium (right), as a function of the energy, for various temperatures. The mass M

corresponds to the pole mass, and is subject to uncertainties of several hundred MeV; we use

the intervals 1.5...2.0 GeV and 4.5...5.0 GeV to illustrate the magnitude of the corresponding

error bands. The low mass corresponds to the upper edge of each error band.

7. Conclusions

The purpose of this paper has been to experiment, as generally as possible, with the resummed

perturbative framework that was introduced in refs. [24, 25], in order to offer one more handle

on the properties of heavy quarkonium in hot QCD, thus supplementing the traditional

approaches based on potential models and on lattice QCD.

The key ingredient of our approach is a careful definition of a finite-temperature real-time

static potential that can be inserted into a Schrödinger equation obeyed by certain heavy

quarkonium Green’s functions. The potential in question, denoted by limt→∞ V>(t, r), has

both a real and an imaginary part (cf. Eq. (2.6)). An important conceptual consequence

from the existence of an imaginary part is that heavy quarkonium should not be thought of

as a stationary state at high temperatures, but as a short-lived transient, with the quark and

antiquark binding together only for a brief moment before unattaching again.

On the more technical level we have noted that, in terms of Eq. (4.17), the vector channel

spectral function gets a contribution only from the S-wave, l = 0, while the scalar channel

spectral function gets a contribution both from the S-wave and P-wave, l = 0, 1. Here we

differ from the potential model analysis in ref. [8] where, as far as we can see, only l = 1

22

Quarkonium signatures from the finite
mass Schrödinger equation:

Spectral function Laine et al.,JHEP0801:043

The spectral function is depicted
for Bottomonium.

The imaginary part induces a
finite width to the resonance
peak (melting of the resonance).

Potential Laine, JHEP 0705:028

The Dilepton rate is shown for
Charmonium and Bottomonium.

A softening of the resonance is
seen for increased temperature.



ANISOTROPIC MEDIA
The static qq̄-potential in a plasma with anisotropic momentum

distribution



Anisotropic Media

In the following the potential will be discussed for an anisotropic plasma
characterized by the static momentum distribution:

f(~p) = nB(p
√

1 + ξ(~vp · ~n)2)
nB : Thermal Bose Distribution, ξ: Anisotropy, ~n: Collision axis

Normalization: We don’t know the relation between the particle density and
the parameters {ξ, β}. Instead we keep the density fixed.

Observation: Any change of the potential is a density effect !
See also the following talk by A.Mocsy and: A. Dumitru, Y. Guo and M. Strickland, “The imaginary part of the
static gluon propagator in an anisotropic QCD plasma,” Phys. Rev. D 79; Y. Burnier, M. Laine and M. Vepsalainen,
“Quarkonium dissociation in the presence of a small momentum space anisotropy,” JHEP 1001, 054.



Normalization
The medium is diluted once ξ is increased if f(~p) is not normalized. The
physical relation between ξ and the particle density in heavy ion collisions is
very hard to obtain from first principles.

How to keep the particle density fixed ?

The simplest approach is to multiply the momentum distribution function
f(T, ξ) by a normalization prefactor N(ξ). Another approach is to rescale the
temperature T → T (ξ).

Multiplicative Normalization
To keep the particle density of the medium fixed the distribution function
f(~p) is multiplied by the prefactor

N(ξ) =
p

1 + ξ.
Landau matching
This matching procedure is often used in the context of hydrodynamic
simulations. The particle density is kept fixed by rescaling T :

T (ξ) = TR−
1
4 (ξ) where R(ξ) =

1

2

„
1

1 + ξ
+

arctan(
√
ξ)√

ξ

«
.

The results from both schemes are consistent for ξ � 1.



Calculation

How to obtain the gluon propagator G̃00
11(ω = 0) ?

The longitudinal part of G̃11 = Re G̃R + 1
2
G̃S in the static limit is needed.

G̃R is known and G̃S is obtained from a Schwinger-Dyson relation.

Retarded gluon propagator in covariant gauge Dumitru et al., Romatschke

G̃µνR (K) = ∆G

»
(K2 − α− γ)

ω4

K4
Bµν + (ω2 − β)Cµν + δ

ω2

K2
Dµν

–
+∆A[Aµν − Cµν ] −

λ

K4
KµKν

with structure functions α(K)− δ(K) and

∆−1
G = (K2 − α− γ)(ω2 − β) − δ2[k2 − (n ·K)2] and ∆−1

A = K2 − α.

A(K)−D(K) form a tensor basis for this system where Lorentz
symmetry is broken by the plasma rest frame and the anisotropy vector.

Schwinger-Dyson Relation Arnold, Moore, Yaffe

The needed Schwinger-Dyson relation [ΠS: symmetric self-energy] is:

G̃S = G̃R ·ΠS · G̃∗R.



Static Limit for ξ � 1

Retarded Propagator
It is straightforward to obtain the retarded propagator in the static limit:

G̃00
R (ω = 0,k) =

k2 +m2
α +m2

γ

(k2 +m2
α +m2

γ)(k2 +m2
β)−m4

δ

Effective masses [θk = ∠(n,k)]:

m̂2
α = −m2

D
ξ

3
cos2 θk m̂2

β = 1 + ξ(cos2 θk −
1

6
)

m̂2
γ =

ξ

3
sin2 θk, m̂2

δ = −ξ π
4

sin θk cos θk

Note that m̂x = mx/mD where mD is the isotropic Debye mass.

Schwinger-Dyson Relation
The calculation of the symmetric propagator is much more difficult. It
can be shown however that only one contraction of G̃R and ΠS is
relevant:

G̃00
S = G̃00

R ·Π00
S · G̃00∗

R



Symmetric Propagator

The symmetric self energy has the following form in the static limit:

iΠµν
S = 8πg2N

1

k

Z
d3p

(2π)3
vµp v

ν
pf(p)(1 + f(p + k))δ(vp · vk),

where vp = p/p. Using the static limit of the retarded propagator and the
Schwinger-Dyson relation the symmetric propagator is obtained.

Symmetric Propagator in the static limit

G̃00
S = −i

2π

k(k2 +m2
D)2

m2
D

β

„
1 + ξ

»
π2 − 3ζ(3)

π2
− 3

4
sin2 θk

–«
+iξ4π

m4
D

β

1

k(k2 +m2
D)3

(cos2 θk −
1

6
)

Having obtained all needed parts of the gluon propagator the qq-potential can
finally be calculated. The symmetric propagator contributes the imaginary
part of the potential again.



Results for ξ = 1
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No Normalization
This case implies a specific relation between the particle density and
the anisotropy. The medium is diluted quickly with increased anisotropy
and the (perturbative) vacuum potential is approached.

Fixed particle density
The change in the potential is very small compared to the isotropic
result. The change observed in the upper case is a density effect.



Conclusions

Thermal Potential
The static qq̄-potential in a thermal medium and the
ensuing quarkonium resonance in equilibrium were
discussed.
Quarkonium in an Anisotropic Plasma
The static potential was calculated for an anisotropic
plasma using a non-equilibrium Schwinger-Dyson relation.
Role of Particle Density and Anisotropy
The qq-potential is sensitve to the density of the medium.
The anisotropy of the medium does not play a role as long
as the density is kept fixed.

Thanks for your attention !


